CamNuvem: A Robbery Dataset for Video Anomaly Detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3390/s222410016 http://hdl.handle.net/11449/246517 |
Resumo: | (1) Background: The research area of video surveillance anomaly detection aims to automatically detect the moment when a video surveillance camera captures something that does not fit the normal pattern. This is a difficult task, but it is important to automate, improve, and lower the cost of the detection of crimes and other accidents. The UCF–Crime dataset is currently the most realistic crime dataset, and it contains hundreds of videos distributed in several categories; it includes a robbery category, which contains videos of people stealing material goods using violence, but this category only includes a few videos. (2) Methods: This work focuses only on the robbery category, presenting a new weakly labelled dataset that contains 486 new real–world robbery surveillance videos acquired from public sources. (3) Results: We have modified and applied three state–of–the–art video surveillance anomaly detection methods to create a benchmark for future studies. We showed that in the best scenario, taking into account only the anomaly videos in our dataset, the best method achieved an AUC of 66.35%. When all anomaly and normal videos were taken into account, the best method achieved an AUC of 88.75%. (4) Conclusion: This result shows that there is a huge research opportunity to create new methods and approaches that can improve robbery detection in video surveillance. |
id |
UNSP_331d0f9ab4c4538e3a81aeec0f2196be |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/246517 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
CamNuvem: A Robbery Dataset for Video Anomaly Detectionactivity recognitiondatasetdeep learninghuman behaviour analysisvideo anomaly detectionvideo surveillanceweakly supervised(1) Background: The research area of video surveillance anomaly detection aims to automatically detect the moment when a video surveillance camera captures something that does not fit the normal pattern. This is a difficult task, but it is important to automate, improve, and lower the cost of the detection of crimes and other accidents. The UCF–Crime dataset is currently the most realistic crime dataset, and it contains hundreds of videos distributed in several categories; it includes a robbery category, which contains videos of people stealing material goods using violence, but this category only includes a few videos. (2) Methods: This work focuses only on the robbery category, presenting a new weakly labelled dataset that contains 486 new real–world robbery surveillance videos acquired from public sources. (3) Results: We have modified and applied three state–of–the–art video surveillance anomaly detection methods to create a benchmark for future studies. We showed that in the best scenario, taking into account only the anomaly videos in our dataset, the best method achieved an AUC of 66.35%. When all anomaly and normal videos were taken into account, the best method achieved an AUC of 88.75%. (4) Conclusion: This result shows that there is a huge research opportunity to create new methods and approaches that can improve robbery detection in video surveillance.IGCE—Institute of Geosciences and Exact Sciences UNESP—São Paulo State University, SPIGCE—Institute of Geosciences and Exact Sciences UNESP—São Paulo State University, SPUniversidade Estadual Paulista (UNESP)de Paula, Davi D. [UNESP]Salvadeo, Denis H. P. [UNESP]de Araujo, Darlan M. N. [UNESP]2023-07-29T12:43:07Z2023-07-29T12:43:07Z2022-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/s222410016Sensors, v. 22, n. 24, 2022.1424-8220http://hdl.handle.net/11449/24651710.3390/s2224100162-s2.0-85144534274Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSensorsinfo:eu-repo/semantics/openAccess2025-04-03T19:41:17Zoai:repositorio.unesp.br:11449/246517Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-03T19:41:17Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
CamNuvem: A Robbery Dataset for Video Anomaly Detection |
title |
CamNuvem: A Robbery Dataset for Video Anomaly Detection |
spellingShingle |
CamNuvem: A Robbery Dataset for Video Anomaly Detection de Paula, Davi D. [UNESP] activity recognition dataset deep learning human behaviour analysis video anomaly detection video surveillance weakly supervised |
title_short |
CamNuvem: A Robbery Dataset for Video Anomaly Detection |
title_full |
CamNuvem: A Robbery Dataset for Video Anomaly Detection |
title_fullStr |
CamNuvem: A Robbery Dataset for Video Anomaly Detection |
title_full_unstemmed |
CamNuvem: A Robbery Dataset for Video Anomaly Detection |
title_sort |
CamNuvem: A Robbery Dataset for Video Anomaly Detection |
author |
de Paula, Davi D. [UNESP] |
author_facet |
de Paula, Davi D. [UNESP] Salvadeo, Denis H. P. [UNESP] de Araujo, Darlan M. N. [UNESP] |
author_role |
author |
author2 |
Salvadeo, Denis H. P. [UNESP] de Araujo, Darlan M. N. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
de Paula, Davi D. [UNESP] Salvadeo, Denis H. P. [UNESP] de Araujo, Darlan M. N. [UNESP] |
dc.subject.por.fl_str_mv |
activity recognition dataset deep learning human behaviour analysis video anomaly detection video surveillance weakly supervised |
topic |
activity recognition dataset deep learning human behaviour analysis video anomaly detection video surveillance weakly supervised |
description |
(1) Background: The research area of video surveillance anomaly detection aims to automatically detect the moment when a video surveillance camera captures something that does not fit the normal pattern. This is a difficult task, but it is important to automate, improve, and lower the cost of the detection of crimes and other accidents. The UCF–Crime dataset is currently the most realistic crime dataset, and it contains hundreds of videos distributed in several categories; it includes a robbery category, which contains videos of people stealing material goods using violence, but this category only includes a few videos. (2) Methods: This work focuses only on the robbery category, presenting a new weakly labelled dataset that contains 486 new real–world robbery surveillance videos acquired from public sources. (3) Results: We have modified and applied three state–of–the–art video surveillance anomaly detection methods to create a benchmark for future studies. We showed that in the best scenario, taking into account only the anomaly videos in our dataset, the best method achieved an AUC of 66.35%. When all anomaly and normal videos were taken into account, the best method achieved an AUC of 88.75%. (4) Conclusion: This result shows that there is a huge research opportunity to create new methods and approaches that can improve robbery detection in video surveillance. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-01 2023-07-29T12:43:07Z 2023-07-29T12:43:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/s222410016 Sensors, v. 22, n. 24, 2022. 1424-8220 http://hdl.handle.net/11449/246517 10.3390/s222410016 2-s2.0-85144534274 |
url |
http://dx.doi.org/10.3390/s222410016 http://hdl.handle.net/11449/246517 |
identifier_str_mv |
Sensors, v. 22, n. 24, 2022. 1424-8220 10.3390/s222410016 2-s2.0-85144534274 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sensors |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482557807230976 |