Nyon-data, a fall detection dataset from a hinged board apparatus

Bibliographic Details
Main Author: Dionísio, Rogério Pais
Publication Date: 2024
Other Authors: Rosa, Ana Rafaela, Jesus, Cassandra Sofia dos Santos
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.11/8893
Summary: Falls are one of the causes of severe hilliness among elders, and the COVID-19 pandemic increased the number of unattended cases because of the social distancing measures. This study aims to create a dataset that collects the data from a 3-axis acceleration sensor fixed on a hinged board apparatus that mimics a human fall event. The datalogging system uses off-the-shelf devices to measure, collect and store the data. The resulting dataset includes data from different angle positions and heights, corresponding to joints of the lower limbs of the human body (ankle, knee, and hip). We use the dataset with a threshold-based fall detection algorithm. The result from the Receiver Operating Characteristic curve shows a good behavior with a mean Area Under the Curve of 0.77 and allow to compute a best threshold value with False Positive Rate of 14.8% and True Positive rate of 89.1%. The optimal threshold value may vary depending on the specific population, activity patterns, and environmental conditions, which may require further customization and validation in real-world settings.
id RCAP_fb8faded67a10daf99796f4f4a897a49
oai_identifier_str oai:repositorio.ipcb.pt:10400.11/8893
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Nyon-data, a fall detection dataset from a hinged board apparatusDatasetFall detection algorithmFalls are one of the causes of severe hilliness among elders, and the COVID-19 pandemic increased the number of unattended cases because of the social distancing measures. This study aims to create a dataset that collects the data from a 3-axis acceleration sensor fixed on a hinged board apparatus that mimics a human fall event. The datalogging system uses off-the-shelf devices to measure, collect and store the data. The resulting dataset includes data from different angle positions and heights, corresponding to joints of the lower limbs of the human body (ankle, knee, and hip). We use the dataset with a threshold-based fall detection algorithm. The result from the Receiver Operating Characteristic curve shows a good behavior with a mean Area Under the Curve of 0.77 and allow to compute a best threshold value with False Positive Rate of 14.8% and True Positive rate of 89.1%. The optimal threshold value may vary depending on the specific population, activity patterns, and environmental conditions, which may require further customization and validation in real-world settings.Springer, ChamRepositório Científico do Instituto Politécnico de Castelo BrancoDionísio, Rogério PaisRosa, Ana RafaelaJesus, Cassandra Sofia dos Santos2024-02-21T12:04:12Z20242024-01-01T00:00:00Zbook partinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.11/8893eng10.1007/978-3-031-53824-7_36info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T14:12:18Zoai:repositorio.ipcb.pt:10400.11/8893Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:27:23.515908Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Nyon-data, a fall detection dataset from a hinged board apparatus
title Nyon-data, a fall detection dataset from a hinged board apparatus
spellingShingle Nyon-data, a fall detection dataset from a hinged board apparatus
Dionísio, Rogério Pais
Dataset
Fall detection algorithm
title_short Nyon-data, a fall detection dataset from a hinged board apparatus
title_full Nyon-data, a fall detection dataset from a hinged board apparatus
title_fullStr Nyon-data, a fall detection dataset from a hinged board apparatus
title_full_unstemmed Nyon-data, a fall detection dataset from a hinged board apparatus
title_sort Nyon-data, a fall detection dataset from a hinged board apparatus
author Dionísio, Rogério Pais
author_facet Dionísio, Rogério Pais
Rosa, Ana Rafaela
Jesus, Cassandra Sofia dos Santos
author_role author
author2 Rosa, Ana Rafaela
Jesus, Cassandra Sofia dos Santos
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico de Castelo Branco
dc.contributor.author.fl_str_mv Dionísio, Rogério Pais
Rosa, Ana Rafaela
Jesus, Cassandra Sofia dos Santos
dc.subject.por.fl_str_mv Dataset
Fall detection algorithm
topic Dataset
Fall detection algorithm
description Falls are one of the causes of severe hilliness among elders, and the COVID-19 pandemic increased the number of unattended cases because of the social distancing measures. This study aims to create a dataset that collects the data from a 3-axis acceleration sensor fixed on a hinged board apparatus that mimics a human fall event. The datalogging system uses off-the-shelf devices to measure, collect and store the data. The resulting dataset includes data from different angle positions and heights, corresponding to joints of the lower limbs of the human body (ankle, knee, and hip). We use the dataset with a threshold-based fall detection algorithm. The result from the Receiver Operating Characteristic curve shows a good behavior with a mean Area Under the Curve of 0.77 and allow to compute a best threshold value with False Positive Rate of 14.8% and True Positive rate of 89.1%. The optimal threshold value may vary depending on the specific population, activity patterns, and environmental conditions, which may require further customization and validation in real-world settings.
publishDate 2024
dc.date.none.fl_str_mv 2024-02-21T12:04:12Z
2024
2024-01-01T00:00:00Z
dc.type.driver.fl_str_mv book part
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.11/8893
url http://hdl.handle.net/10400.11/8893
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1007/978-3-031-53824-7_36
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer, Cham
publisher.none.fl_str_mv Springer, Cham
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599284941946880