Nyon-data, a fall detection dataset from a hinged board apparatus
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.11/8893 |
Summary: | Falls are one of the causes of severe hilliness among elders, and the COVID-19 pandemic increased the number of unattended cases because of the social distancing measures. This study aims to create a dataset that collects the data from a 3-axis acceleration sensor fixed on a hinged board apparatus that mimics a human fall event. The datalogging system uses off-the-shelf devices to measure, collect and store the data. The resulting dataset includes data from different angle positions and heights, corresponding to joints of the lower limbs of the human body (ankle, knee, and hip). We use the dataset with a threshold-based fall detection algorithm. The result from the Receiver Operating Characteristic curve shows a good behavior with a mean Area Under the Curve of 0.77 and allow to compute a best threshold value with False Positive Rate of 14.8% and True Positive rate of 89.1%. The optimal threshold value may vary depending on the specific population, activity patterns, and environmental conditions, which may require further customization and validation in real-world settings. |
id |
RCAP_fb8faded67a10daf99796f4f4a897a49 |
---|---|
oai_identifier_str |
oai:repositorio.ipcb.pt:10400.11/8893 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Nyon-data, a fall detection dataset from a hinged board apparatusDatasetFall detection algorithmFalls are one of the causes of severe hilliness among elders, and the COVID-19 pandemic increased the number of unattended cases because of the social distancing measures. This study aims to create a dataset that collects the data from a 3-axis acceleration sensor fixed on a hinged board apparatus that mimics a human fall event. The datalogging system uses off-the-shelf devices to measure, collect and store the data. The resulting dataset includes data from different angle positions and heights, corresponding to joints of the lower limbs of the human body (ankle, knee, and hip). We use the dataset with a threshold-based fall detection algorithm. The result from the Receiver Operating Characteristic curve shows a good behavior with a mean Area Under the Curve of 0.77 and allow to compute a best threshold value with False Positive Rate of 14.8% and True Positive rate of 89.1%. The optimal threshold value may vary depending on the specific population, activity patterns, and environmental conditions, which may require further customization and validation in real-world settings.Springer, ChamRepositório Científico do Instituto Politécnico de Castelo BrancoDionísio, Rogério PaisRosa, Ana RafaelaJesus, Cassandra Sofia dos Santos2024-02-21T12:04:12Z20242024-01-01T00:00:00Zbook partinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.11/8893eng10.1007/978-3-031-53824-7_36info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T14:12:18Zoai:repositorio.ipcb.pt:10400.11/8893Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:27:23.515908Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Nyon-data, a fall detection dataset from a hinged board apparatus |
title |
Nyon-data, a fall detection dataset from a hinged board apparatus |
spellingShingle |
Nyon-data, a fall detection dataset from a hinged board apparatus Dionísio, Rogério Pais Dataset Fall detection algorithm |
title_short |
Nyon-data, a fall detection dataset from a hinged board apparatus |
title_full |
Nyon-data, a fall detection dataset from a hinged board apparatus |
title_fullStr |
Nyon-data, a fall detection dataset from a hinged board apparatus |
title_full_unstemmed |
Nyon-data, a fall detection dataset from a hinged board apparatus |
title_sort |
Nyon-data, a fall detection dataset from a hinged board apparatus |
author |
Dionísio, Rogério Pais |
author_facet |
Dionísio, Rogério Pais Rosa, Ana Rafaela Jesus, Cassandra Sofia dos Santos |
author_role |
author |
author2 |
Rosa, Ana Rafaela Jesus, Cassandra Sofia dos Santos |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico de Castelo Branco |
dc.contributor.author.fl_str_mv |
Dionísio, Rogério Pais Rosa, Ana Rafaela Jesus, Cassandra Sofia dos Santos |
dc.subject.por.fl_str_mv |
Dataset Fall detection algorithm |
topic |
Dataset Fall detection algorithm |
description |
Falls are one of the causes of severe hilliness among elders, and the COVID-19 pandemic increased the number of unattended cases because of the social distancing measures. This study aims to create a dataset that collects the data from a 3-axis acceleration sensor fixed on a hinged board apparatus that mimics a human fall event. The datalogging system uses off-the-shelf devices to measure, collect and store the data. The resulting dataset includes data from different angle positions and heights, corresponding to joints of the lower limbs of the human body (ankle, knee, and hip). We use the dataset with a threshold-based fall detection algorithm. The result from the Receiver Operating Characteristic curve shows a good behavior with a mean Area Under the Curve of 0.77 and allow to compute a best threshold value with False Positive Rate of 14.8% and True Positive rate of 89.1%. The optimal threshold value may vary depending on the specific population, activity patterns, and environmental conditions, which may require further customization and validation in real-world settings. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02-21T12:04:12Z 2024 2024-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
book part |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.11/8893 |
url |
http://hdl.handle.net/10400.11/8893 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1007/978-3-031-53824-7_36 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer, Cham |
publisher.none.fl_str_mv |
Springer, Cham |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833599284941946880 |