Export Ready — 

DOES MRS-GARCH OUTPERFORMS THE SINGLE GARCH-TYPE MODELS FOR FORECASTING?

Bibliographic Details
Main Author: Pereira Conte, Bruno; Universidade Federal de Santa Maria
Publication Date: 2019
Other Authors: Ceretta, Paulo Sérgio; UFSM
Language: eng
Source: Revista de Desenvolvimento Econômico (Online) - RDE
Download full: https://revistas.unifacs.br/index.php/rde/article/view/5726
Summary: This paper evaluated if the Markov switching regime GARCH models can outperforms the single GARCH-type models on forecasting. To achieve this objective, it was used the Brazilian stock market – Ibovespa –  between 2012 and 2017 as study scope. The major difference of our work is the definition of the in-sample and out-of-sample pattern. This paper determined a 200 steps-ahead (10 months) forecast, with model re-estimation at each step-ahead, in order to find conclusive evidence and robust results of the model which has better predictive ability. The results showed that the single GARCH-type models show a slightly better performance for VaR at 5% and switching regime models had better performance at 1% and predictive accuracy considering the most of statistical criteria. Besides that, no model could be determined as benchmark by statistical criteria, which displays that there´s no way to determine a model that outperforms for forecasting on the Brazilian stock market.
id UNIFACS-3_8e65bbdb72d1ecef5e567852a7984958
oai_identifier_str oai:ojs.200.223.74.126:article/5726
network_acronym_str UNIFACS-3
network_name_str Revista de Desenvolvimento Econômico (Online) - RDE
repository_id_str
spelling DOES MRS-GARCH OUTPERFORMS THE SINGLE GARCH-TYPE MODELS FOR FORECASTING?O MRS-GARCH SUPERA OS MODELOS DO TIPO GARCH PARA PREVISÃO?Forecasting; Value-at-Risk; Volatility; MRS-GARCH; Stock marketPrevisão; Value-at-risk; Volatilidade; MRS-GARCH; Mercado acionárioThis paper evaluated if the Markov switching regime GARCH models can outperforms the single GARCH-type models on forecasting. To achieve this objective, it was used the Brazilian stock market – Ibovespa –  between 2012 and 2017 as study scope. The major difference of our work is the definition of the in-sample and out-of-sample pattern. This paper determined a 200 steps-ahead (10 months) forecast, with model re-estimation at each step-ahead, in order to find conclusive evidence and robust results of the model which has better predictive ability. The results showed that the single GARCH-type models show a slightly better performance for VaR at 5% and switching regime models had better performance at 1% and predictive accuracy considering the most of statistical criteria. Besides that, no model could be determined as benchmark by statistical criteria, which displays that there´s no way to determine a model that outperforms for forecasting on the Brazilian stock market.Este trabalho avaliou se os modelos GARCH do regime de Markov podem superar os modelos do tipo GARCH na previsão. Para atingir este objetivo, foi utilizado o mercado acionário brasileiro - Ibovespa - entre 2012 e 2017 como escopo do estudo. A principal diferença do nosso trabalho é a definição do padrão dentro e fora da amostra. Este trabalho determinou uma previsão de 200 passos à frente (10 meses), com reestimação do modelo a cada passo à frente, a fim de encontrar evidências conclusivas e resultados robustos do modelo que tem melhor capacidade preditiva. Os resultados mostraram que os modelos do tipo GARCH mostram um desempenho ligeiramente melhor para o VaR a 5% e os modelos de regime de Markov tiveram melhor desempenho a 1% e precisão preditiva considerando a maioria dos critérios estatísticos. Além disso, conclui-se que nenhum modelo poderia ser determinado como referência por critérios estatísticos, o que mostra que não há como determinar um modelo que supera a previsão no mercado acionário brasileiro.Associação Brasileira de Editores CientíficosPereira Conte, Bruno; Universidade Federal de Santa MariaCeretta, Paulo Sérgio; UFSM2019-05-18info:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unifacs.br/index.php/rde/article/view/572610.21452/rde.v3i41.5726RDE - Revista de Desenvolvimento Econômico; Ano XX - V. 3 - N. 41 - Dezembro de 2018reponame:Revista de Desenvolvimento Econômico (Online) - RDEinstname:Universidade Salvador (UNIFACS)instacron:UNIFACSA partir del momento del envío se asume automática la cesión de los derechos autorales para la Revista, toda vez que haya sido aprobado e aceptado para publicación.Autores que publicam nesta revista concordam com os seguintes termos: Autores que publicam na RDE mantêm os direitos sobre a sua obra e concedem à revista o direito de primeira publicação, realizada sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho e assevera o reconhecimento da autoria e do veículo de publicação original, a RDE.info:eu-repo/semantics/openAccesseng2019-05-18T15:34:09Zoai:ojs.200.223.74.126:article/5726Revistahttps://revistas.unifacs.br/index.php/rdePRIhttps://revistas.unifacs.br/index.php/rde/oaijose.gilea@animaeducacao.com.br || unifacs@nexodoc.com.br2178-80221516-1684opendoar:2019-05-18T15:34:09Revista de Desenvolvimento Econômico (Online) - RDE - Universidade Salvador (UNIFACS)false
dc.title.none.fl_str_mv DOES MRS-GARCH OUTPERFORMS THE SINGLE GARCH-TYPE MODELS FOR FORECASTING?
O MRS-GARCH SUPERA OS MODELOS DO TIPO GARCH PARA PREVISÃO?
title DOES MRS-GARCH OUTPERFORMS THE SINGLE GARCH-TYPE MODELS FOR FORECASTING?
spellingShingle DOES MRS-GARCH OUTPERFORMS THE SINGLE GARCH-TYPE MODELS FOR FORECASTING?
Pereira Conte, Bruno; Universidade Federal de Santa Maria
Forecasting; Value-at-Risk; Volatility; MRS-GARCH; Stock market
Previsão; Value-at-risk; Volatilidade; MRS-GARCH; Mercado acionário
title_short DOES MRS-GARCH OUTPERFORMS THE SINGLE GARCH-TYPE MODELS FOR FORECASTING?
title_full DOES MRS-GARCH OUTPERFORMS THE SINGLE GARCH-TYPE MODELS FOR FORECASTING?
title_fullStr DOES MRS-GARCH OUTPERFORMS THE SINGLE GARCH-TYPE MODELS FOR FORECASTING?
title_full_unstemmed DOES MRS-GARCH OUTPERFORMS THE SINGLE GARCH-TYPE MODELS FOR FORECASTING?
title_sort DOES MRS-GARCH OUTPERFORMS THE SINGLE GARCH-TYPE MODELS FOR FORECASTING?
author Pereira Conte, Bruno; Universidade Federal de Santa Maria
author_facet Pereira Conte, Bruno; Universidade Federal de Santa Maria
Ceretta, Paulo Sérgio; UFSM
author_role author
author2 Ceretta, Paulo Sérgio; UFSM
author2_role author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv Pereira Conte, Bruno; Universidade Federal de Santa Maria
Ceretta, Paulo Sérgio; UFSM
dc.subject.por.fl_str_mv Forecasting; Value-at-Risk; Volatility; MRS-GARCH; Stock market
Previsão; Value-at-risk; Volatilidade; MRS-GARCH; Mercado acionário
topic Forecasting; Value-at-Risk; Volatility; MRS-GARCH; Stock market
Previsão; Value-at-risk; Volatilidade; MRS-GARCH; Mercado acionário
description This paper evaluated if the Markov switching regime GARCH models can outperforms the single GARCH-type models on forecasting. To achieve this objective, it was used the Brazilian stock market – Ibovespa –  between 2012 and 2017 as study scope. The major difference of our work is the definition of the in-sample and out-of-sample pattern. This paper determined a 200 steps-ahead (10 months) forecast, with model re-estimation at each step-ahead, in order to find conclusive evidence and robust results of the model which has better predictive ability. The results showed that the single GARCH-type models show a slightly better performance for VaR at 5% and switching regime models had better performance at 1% and predictive accuracy considering the most of statistical criteria. Besides that, no model could be determined as benchmark by statistical criteria, which displays that there´s no way to determine a model that outperforms for forecasting on the Brazilian stock market.
publishDate 2019
dc.date.none.fl_str_mv 2019-05-18
dc.type.none.fl_str_mv
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.unifacs.br/index.php/rde/article/view/5726
10.21452/rde.v3i41.5726
url https://revistas.unifacs.br/index.php/rde/article/view/5726
identifier_str_mv 10.21452/rde.v3i41.5726
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Associação Brasileira de Editores Científicos
publisher.none.fl_str_mv Associação Brasileira de Editores Científicos
dc.source.none.fl_str_mv RDE - Revista de Desenvolvimento Econômico; Ano XX - V. 3 - N. 41 - Dezembro de 2018
reponame:Revista de Desenvolvimento Econômico (Online) - RDE
instname:Universidade Salvador (UNIFACS)
instacron:UNIFACS
instname_str Universidade Salvador (UNIFACS)
instacron_str UNIFACS
institution UNIFACS
reponame_str Revista de Desenvolvimento Econômico (Online) - RDE
collection Revista de Desenvolvimento Econômico (Online) - RDE
repository.name.fl_str_mv Revista de Desenvolvimento Econômico (Online) - RDE - Universidade Salvador (UNIFACS)
repository.mail.fl_str_mv jose.gilea@animaeducacao.com.br || unifacs@nexodoc.com.br
_version_ 1834646030159708160