Forecasting Bitcoin returns volatility using GARCH methods

Detalhes bibliográficos
Autor(a) principal: Loureiro, Clara Verdade
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10071/30810
Resumo: This study aims to investigate the dynamics of Bitcoin’s price and volatility. The analysis begins by examining Bitcoin’s daily returns, identifying a stationary time series with pronounced volatility clusters. These characteristics, combined with (a)symmetry and (non)uniform dispersion, suggest the suitability of ARCH/GARCH models for statistical analysis. To determine the most appropriate model, a range of GARCH, EGARCH, and GARCH models with exogenous variable models are evaluated. The assessment includes a careful examination of AIC and BIC values and the interpretation of the coefficients of the model parameters. The statistical significance of coefficients confirms the impact of past squared returns and conditional variances on current volatility. The study culminates in a detailed analysis of Value at Risk (VaR) forecasting, with the EGARCH (1,1) model with a Student’s-t distribution emerging as the most effective in capturing Bitcoin returns’ VaR, based on the number of exceedances identified at 99% and 95% confidence levels. The research underscores the importance of choosing a model that aligns with the user’s risk profile and investment goals. However, it also acknowledges some limitations, such as the incapacity of using the exogenous variable in VaR forecasting and the potential for more advanced computational methods in future investigations.
id RCAP_6fbbca06a481e4e0611e0ac6b4711a0b
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/30810
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Forecasting Bitcoin returns volatility using GARCH methodsBitcoinVolatilidade -- VolatilityARCH/GARCH modelsModelos ARCH/GARCHThis study aims to investigate the dynamics of Bitcoin’s price and volatility. The analysis begins by examining Bitcoin’s daily returns, identifying a stationary time series with pronounced volatility clusters. These characteristics, combined with (a)symmetry and (non)uniform dispersion, suggest the suitability of ARCH/GARCH models for statistical analysis. To determine the most appropriate model, a range of GARCH, EGARCH, and GARCH models with exogenous variable models are evaluated. The assessment includes a careful examination of AIC and BIC values and the interpretation of the coefficients of the model parameters. The statistical significance of coefficients confirms the impact of past squared returns and conditional variances on current volatility. The study culminates in a detailed analysis of Value at Risk (VaR) forecasting, with the EGARCH (1,1) model with a Student’s-t distribution emerging as the most effective in capturing Bitcoin returns’ VaR, based on the number of exceedances identified at 99% and 95% confidence levels. The research underscores the importance of choosing a model that aligns with the user’s risk profile and investment goals. However, it also acknowledges some limitations, such as the incapacity of using the exogenous variable in VaR forecasting and the potential for more advanced computational methods in future investigations.Este estudo tem como objetivo investigar a dinâmica do preço e volatilidade da Bitcoin. O primeiro passo da análise consiste em examinar os retornos diários da Bitcoin, identificando uma série temporal estacionária com clusters de volatilidade acentuada. Essas características, a par com (a)simetria e a (não)uniformidade da dispersão identificadas, sugerem a adequação do uso de modelos ARCH/GARCH para a análise estatística. Para determinar o modelo mais apropriado, são avaliados diversos modelos GARCH, EGARCH e modelos GARCH com variáveis exógenas. A avaliação inclui uma análise cuidadosa dos valores de AIC e BIC e a interpretação dos coeficientes dos parâmetros dos modelos. A significância estatística dos coeficientes confirma o impacto dos retornos passados ao quadrado e das variâncias condicionais na volatilidade atual. O estudo culmina numa análise detalhada da previsão do Value at Risk, (VaR), sendo que o modelo EGARCH (1,1) com distribuição t-student se destaca como o mais eficaz na captura do VaR dos retornos da Bitcoin, com base no número de quebras identificadas a níveis de confiança de 99% e 95%. A pesquisa destaca a importância de escolher um modelo que esteja alinhado com o perfil de risco e os objetivos de investimento do utilizador. No entanto, também reconhecemos algumas limitações no nosso estudo, como a incapacidade de usar uma variável exógena na previsão da VaR e a necessidade de métodos computacionais mais avançados em futuras investigações.2024-02-03T15:33:04Z2023-12-11T00:00:00Z2023-12-112023-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/30810TID:203472799engLoureiro, Clara Verdadeinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T02:45:46Zoai:repositorio.iscte-iul.pt:10071/30810Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:06:28.370800Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Forecasting Bitcoin returns volatility using GARCH methods
title Forecasting Bitcoin returns volatility using GARCH methods
spellingShingle Forecasting Bitcoin returns volatility using GARCH methods
Loureiro, Clara Verdade
Bitcoin
Volatilidade -- Volatility
ARCH/GARCH models
Modelos ARCH/GARCH
title_short Forecasting Bitcoin returns volatility using GARCH methods
title_full Forecasting Bitcoin returns volatility using GARCH methods
title_fullStr Forecasting Bitcoin returns volatility using GARCH methods
title_full_unstemmed Forecasting Bitcoin returns volatility using GARCH methods
title_sort Forecasting Bitcoin returns volatility using GARCH methods
author Loureiro, Clara Verdade
author_facet Loureiro, Clara Verdade
author_role author
dc.contributor.author.fl_str_mv Loureiro, Clara Verdade
dc.subject.por.fl_str_mv Bitcoin
Volatilidade -- Volatility
ARCH/GARCH models
Modelos ARCH/GARCH
topic Bitcoin
Volatilidade -- Volatility
ARCH/GARCH models
Modelos ARCH/GARCH
description This study aims to investigate the dynamics of Bitcoin’s price and volatility. The analysis begins by examining Bitcoin’s daily returns, identifying a stationary time series with pronounced volatility clusters. These characteristics, combined with (a)symmetry and (non)uniform dispersion, suggest the suitability of ARCH/GARCH models for statistical analysis. To determine the most appropriate model, a range of GARCH, EGARCH, and GARCH models with exogenous variable models are evaluated. The assessment includes a careful examination of AIC and BIC values and the interpretation of the coefficients of the model parameters. The statistical significance of coefficients confirms the impact of past squared returns and conditional variances on current volatility. The study culminates in a detailed analysis of Value at Risk (VaR) forecasting, with the EGARCH (1,1) model with a Student’s-t distribution emerging as the most effective in capturing Bitcoin returns’ VaR, based on the number of exceedances identified at 99% and 95% confidence levels. The research underscores the importance of choosing a model that aligns with the user’s risk profile and investment goals. However, it also acknowledges some limitations, such as the incapacity of using the exogenous variable in VaR forecasting and the potential for more advanced computational methods in future investigations.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-11T00:00:00Z
2023-12-11
2023-10
2024-02-03T15:33:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/30810
TID:203472799
url http://hdl.handle.net/10071/30810
identifier_str_mv TID:203472799
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597188829085696