Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions

Detalhes bibliográficos
Autor(a) principal: Balazon, Francis
Data de Publicação: 2025
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Diversitas Journal
Texto Completo: https://diversitasjournal.com.br/diversitas_journal/article/view/3131
Resumo: Alcohol addiction has increasingly emerged as a significant concern in global health, with current methods of prediction and classification revealing certain limitations. The principal objective of this study was to deepen the understanding of predicting and classifying alcohol addiction levels by employing the Naïve Bayes Algorithm and K-means Clustering. Through a thorough survey, data from 500 participants were collected, shedding light on factors such as the frequency of alcohol consumption and associated negative impacts. The methodology utilized the Naïve Bayes Algorithm, registering a notable accuracy of 95%, precision of 93%, recall of 97%, and an F1 Score of 95%. Concurrently, the K-means Clustering method effectively delineated three distinct levels of addiction: less addicted, mildly addicted, and highly addicted. When juxtaposed with existing literature and methodologies, the study's approach showcases superior accuracy and a refined classification system, offering a potent tool for healthcare practitioners to identify and address alcohol addiction. Potential avenues for future exploration include integrating varied algorithms and probing into other facets of addiction.
id UNEAL_ce790d3166cdfdb0a7e1869fcef75d2f
oai_identifier_str oai:ojs.diversitasjournal.com.br:article/3131
network_acronym_str UNEAL
network_name_str Diversitas Journal
repository_id_str
spelling Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health InterventionsUsando o Algoritmo Naïve Bayes para Prever e Classificar a Gravidade da Dependência de Álcool: Uma Abordagem de Aprendizado de Máquina para Intervenções de Saúde PúblicaAprendizado de máquinaAlgoritmo Naïve Bayes Agrupamento K-meansAlcoolismo Dependência de álcoolMachine Learning, Naïve Bayes AlgorithmK-means ClusteringAlcoholism,Alcohol AddictionAlgorithmAlcohol addiction has increasingly emerged as a significant concern in global health, with current methods of prediction and classification revealing certain limitations. The principal objective of this study was to deepen the understanding of predicting and classifying alcohol addiction levels by employing the Naïve Bayes Algorithm and K-means Clustering. Through a thorough survey, data from 500 participants were collected, shedding light on factors such as the frequency of alcohol consumption and associated negative impacts. The methodology utilized the Naïve Bayes Algorithm, registering a notable accuracy of 95%, precision of 93%, recall of 97%, and an F1 Score of 95%. Concurrently, the K-means Clustering method effectively delineated three distinct levels of addiction: less addicted, mildly addicted, and highly addicted. When juxtaposed with existing literature and methodologies, the study's approach showcases superior accuracy and a refined classification system, offering a potent tool for healthcare practitioners to identify and address alcohol addiction. Potential avenues for future exploration include integrating varied algorithms and probing into other facets of addiction.O vício em álcool tem emergido cada vez mais como uma preocupação significativa na saúde global, com os métodos atuais de previsão e classificação revelando certas limitações. O principal objetivo deste estudo foi aprofundar a compreensão da previsão e classificação dos níveis de dependência alcoólica, empregando o Algoritmo Naive Bayes e a Clusterização K-means. Através de uma pesquisa abrangente, foram coletados dados de 500 participantes, iluminando fatores como a frequência de consumo de álcool e os impactos negativos associados. A metodologia utilizou o Algoritmo Naive Bayes, registrando uma notável precisão de 95%, precisão de 93%, recall de 97% e um F1 Score de 95%. Simultaneamente, o método de Clusterização K-means delineou efetivamente três níveis distintos de vício: menos viciado, moderadamente viciado e altamente viciado. Quando justaposto com a literatura e metodologias existentes, a abordagem do estudo mostra superior precisão e um sistema de classificação refinado, oferecendo uma ferramenta potente para profissionais de saúde identificarem e abordarem o vício em álcool. As possíveis vias para exploração futura incluem a integração de algoritmos variados e a investigação de outras facetas do vício.           Universidade Estadual de Alagoas - Eduneal2025-03-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://diversitasjournal.com.br/diversitas_journal/article/view/313110.48017/dj.v10i1.3131Diversitas Journal; Vol. 10 No. 1 (2025): Scientific integration for social and environmental strengthening.Diversitas Journal; Vol. 10 Núm. 1 (2025): Integración científica para el fortalecimiento social y ambiental.Diversitas Journal; v. 10 n. 1 (2025): Integração científica para o fortalecimento social e ambiental.2525-521510.48017/dj.v10i1reponame:Diversitas Journalinstname:Universidade Estadual de Alagoas (UNEAL)instacron:UNEALenghttps://diversitasjournal.com.br/diversitas_journal/article/view/3131/2853Copyright (c) 2025 Francis Balazonhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBalazon, Francis2025-04-11T13:56:27Zoai:ojs.diversitasjournal.com.br:article/3131Revistahttps://diversitasjournal.com.br/diversitas_journal/indexPUBhttps://www.e-publicacoes.uerj.br/index.php/muralinternacional/oairevistadiversitasjournal@gmail.com2525-52152525-5215opendoar:2025-04-11T13:56:27Diversitas Journal - Universidade Estadual de Alagoas (UNEAL)false
dc.title.none.fl_str_mv Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions
Usando o Algoritmo Naïve Bayes para Prever e Classificar a Gravidade da Dependência de Álcool: Uma Abordagem de Aprendizado de Máquina para Intervenções de Saúde Pública
title Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions
spellingShingle Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions
Balazon, Francis
Aprendizado de máquina
Algoritmo Naïve Bayes
Agrupamento K-means
Alcoolismo
Dependência de álcool
Machine Learning,
Naïve Bayes Algorithm
K-means Clustering
Alcoholism,
Alcohol Addiction
Algorithm
title_short Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions
title_full Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions
title_fullStr Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions
title_full_unstemmed Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions
title_sort Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions
author Balazon, Francis
author_facet Balazon, Francis
author_role author
dc.contributor.author.fl_str_mv Balazon, Francis
dc.subject.por.fl_str_mv Aprendizado de máquina
Algoritmo Naïve Bayes
Agrupamento K-means
Alcoolismo
Dependência de álcool
Machine Learning,
Naïve Bayes Algorithm
K-means Clustering
Alcoholism,
Alcohol Addiction
Algorithm
topic Aprendizado de máquina
Algoritmo Naïve Bayes
Agrupamento K-means
Alcoolismo
Dependência de álcool
Machine Learning,
Naïve Bayes Algorithm
K-means Clustering
Alcoholism,
Alcohol Addiction
Algorithm
description Alcohol addiction has increasingly emerged as a significant concern in global health, with current methods of prediction and classification revealing certain limitations. The principal objective of this study was to deepen the understanding of predicting and classifying alcohol addiction levels by employing the Naïve Bayes Algorithm and K-means Clustering. Through a thorough survey, data from 500 participants were collected, shedding light on factors such as the frequency of alcohol consumption and associated negative impacts. The methodology utilized the Naïve Bayes Algorithm, registering a notable accuracy of 95%, precision of 93%, recall of 97%, and an F1 Score of 95%. Concurrently, the K-means Clustering method effectively delineated three distinct levels of addiction: less addicted, mildly addicted, and highly addicted. When juxtaposed with existing literature and methodologies, the study's approach showcases superior accuracy and a refined classification system, offering a potent tool for healthcare practitioners to identify and address alcohol addiction. Potential avenues for future exploration include integrating varied algorithms and probing into other facets of addiction.
publishDate 2025
dc.date.none.fl_str_mv 2025-03-28
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://diversitasjournal.com.br/diversitas_journal/article/view/3131
10.48017/dj.v10i1.3131
url https://diversitasjournal.com.br/diversitas_journal/article/view/3131
identifier_str_mv 10.48017/dj.v10i1.3131
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://diversitasjournal.com.br/diversitas_journal/article/view/3131/2853
dc.rights.driver.fl_str_mv Copyright (c) 2025 Francis Balazon
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2025 Francis Balazon
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Alagoas - Eduneal
publisher.none.fl_str_mv Universidade Estadual de Alagoas - Eduneal
dc.source.none.fl_str_mv Diversitas Journal; Vol. 10 No. 1 (2025): Scientific integration for social and environmental strengthening.
Diversitas Journal; Vol. 10 Núm. 1 (2025): Integración científica para el fortalecimiento social y ambiental.
Diversitas Journal; v. 10 n. 1 (2025): Integração científica para o fortalecimento social e ambiental.
2525-5215
10.48017/dj.v10i1
reponame:Diversitas Journal
instname:Universidade Estadual de Alagoas (UNEAL)
instacron:UNEAL
instname_str Universidade Estadual de Alagoas (UNEAL)
instacron_str UNEAL
institution UNEAL
reponame_str Diversitas Journal
collection Diversitas Journal
repository.name.fl_str_mv Diversitas Journal - Universidade Estadual de Alagoas (UNEAL)
repository.mail.fl_str_mv revistadiversitasjournal@gmail.com
_version_ 1831935234384330752