Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions
| Main Author: | |
|---|---|
| Publication Date: | 2025 |
| Format: | Article |
| Language: | eng |
| Source: | Diversitas Journal |
| Download full: | https://diversitasjournal.com.br/diversitas_journal/article/view/3131 |
Summary: | Alcohol addiction has increasingly emerged as a significant concern in global health, with current methods of prediction and classification revealing certain limitations. The principal objective of this study was to deepen the understanding of predicting and classifying alcohol addiction levels by employing the Naïve Bayes Algorithm and K-means Clustering. Through a thorough survey, data from 500 participants were collected, shedding light on factors such as the frequency of alcohol consumption and associated negative impacts. The methodology utilized the Naïve Bayes Algorithm, registering a notable accuracy of 95%, precision of 93%, recall of 97%, and an F1 Score of 95%. Concurrently, the K-means Clustering method effectively delineated three distinct levels of addiction: less addicted, mildly addicted, and highly addicted. When juxtaposed with existing literature and methodologies, the study's approach showcases superior accuracy and a refined classification system, offering a potent tool for healthcare practitioners to identify and address alcohol addiction. Potential avenues for future exploration include integrating varied algorithms and probing into other facets of addiction. |
| id |
UNEAL_ce790d3166cdfdb0a7e1869fcef75d2f |
|---|---|
| oai_identifier_str |
oai:ojs.diversitasjournal.com.br:article/3131 |
| network_acronym_str |
UNEAL |
| network_name_str |
Diversitas Journal |
| repository_id_str |
|
| spelling |
Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health InterventionsUsando o Algoritmo Naïve Bayes para Prever e Classificar a Gravidade da Dependência de Álcool: Uma Abordagem de Aprendizado de Máquina para Intervenções de Saúde PúblicaAprendizado de máquinaAlgoritmo Naïve Bayes Agrupamento K-meansAlcoolismo Dependência de álcoolMachine Learning, Naïve Bayes AlgorithmK-means ClusteringAlcoholism,Alcohol AddictionAlgorithmAlcohol addiction has increasingly emerged as a significant concern in global health, with current methods of prediction and classification revealing certain limitations. The principal objective of this study was to deepen the understanding of predicting and classifying alcohol addiction levels by employing the Naïve Bayes Algorithm and K-means Clustering. Through a thorough survey, data from 500 participants were collected, shedding light on factors such as the frequency of alcohol consumption and associated negative impacts. The methodology utilized the Naïve Bayes Algorithm, registering a notable accuracy of 95%, precision of 93%, recall of 97%, and an F1 Score of 95%. Concurrently, the K-means Clustering method effectively delineated three distinct levels of addiction: less addicted, mildly addicted, and highly addicted. When juxtaposed with existing literature and methodologies, the study's approach showcases superior accuracy and a refined classification system, offering a potent tool for healthcare practitioners to identify and address alcohol addiction. Potential avenues for future exploration include integrating varied algorithms and probing into other facets of addiction.O vício em álcool tem emergido cada vez mais como uma preocupação significativa na saúde global, com os métodos atuais de previsão e classificação revelando certas limitações. O principal objetivo deste estudo foi aprofundar a compreensão da previsão e classificação dos níveis de dependência alcoólica, empregando o Algoritmo Naive Bayes e a Clusterização K-means. Através de uma pesquisa abrangente, foram coletados dados de 500 participantes, iluminando fatores como a frequência de consumo de álcool e os impactos negativos associados. A metodologia utilizou o Algoritmo Naive Bayes, registrando uma notável precisão de 95%, precisão de 93%, recall de 97% e um F1 Score de 95%. Simultaneamente, o método de Clusterização K-means delineou efetivamente três níveis distintos de vício: menos viciado, moderadamente viciado e altamente viciado. Quando justaposto com a literatura e metodologias existentes, a abordagem do estudo mostra superior precisão e um sistema de classificação refinado, oferecendo uma ferramenta potente para profissionais de saúde identificarem e abordarem o vício em álcool. As possíveis vias para exploração futura incluem a integração de algoritmos variados e a investigação de outras facetas do vício. Universidade Estadual de Alagoas - Eduneal2025-03-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://diversitasjournal.com.br/diversitas_journal/article/view/313110.48017/dj.v10i1.3131Diversitas Journal; Vol. 10 No. 1 (2025): Scientific integration for social and environmental strengthening.Diversitas Journal; Vol. 10 Núm. 1 (2025): Integración científica para el fortalecimiento social y ambiental.Diversitas Journal; v. 10 n. 1 (2025): Integração científica para o fortalecimento social e ambiental.2525-521510.48017/dj.v10i1reponame:Diversitas Journalinstname:Universidade Estadual de Alagoas (UNEAL)instacron:UNEALenghttps://diversitasjournal.com.br/diversitas_journal/article/view/3131/2853Copyright (c) 2025 Francis Balazonhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBalazon, Francis2025-04-11T13:56:27Zoai:ojs.diversitasjournal.com.br:article/3131Revistahttps://diversitasjournal.com.br/diversitas_journal/indexPUBhttps://www.e-publicacoes.uerj.br/index.php/muralinternacional/oairevistadiversitasjournal@gmail.com2525-52152525-5215opendoar:2025-04-11T13:56:27Diversitas Journal - Universidade Estadual de Alagoas (UNEAL)false |
| dc.title.none.fl_str_mv |
Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions Usando o Algoritmo Naïve Bayes para Prever e Classificar a Gravidade da Dependência de Álcool: Uma Abordagem de Aprendizado de Máquina para Intervenções de Saúde Pública |
| title |
Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions |
| spellingShingle |
Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions Balazon, Francis Aprendizado de máquina Algoritmo Naïve Bayes Agrupamento K-means Alcoolismo Dependência de álcool Machine Learning, Naïve Bayes Algorithm K-means Clustering Alcoholism, Alcohol Addiction Algorithm |
| title_short |
Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions |
| title_full |
Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions |
| title_fullStr |
Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions |
| title_full_unstemmed |
Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions |
| title_sort |
Using Naïve Bayes Algorithm to Predict and Classify Alcohol Addiction Severity: A Machine Learning Approach for Public Health Interventions |
| author |
Balazon, Francis |
| author_facet |
Balazon, Francis |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Balazon, Francis |
| dc.subject.por.fl_str_mv |
Aprendizado de máquina Algoritmo Naïve Bayes Agrupamento K-means Alcoolismo Dependência de álcool Machine Learning, Naïve Bayes Algorithm K-means Clustering Alcoholism, Alcohol Addiction Algorithm |
| topic |
Aprendizado de máquina Algoritmo Naïve Bayes Agrupamento K-means Alcoolismo Dependência de álcool Machine Learning, Naïve Bayes Algorithm K-means Clustering Alcoholism, Alcohol Addiction Algorithm |
| description |
Alcohol addiction has increasingly emerged as a significant concern in global health, with current methods of prediction and classification revealing certain limitations. The principal objective of this study was to deepen the understanding of predicting and classifying alcohol addiction levels by employing the Naïve Bayes Algorithm and K-means Clustering. Through a thorough survey, data from 500 participants were collected, shedding light on factors such as the frequency of alcohol consumption and associated negative impacts. The methodology utilized the Naïve Bayes Algorithm, registering a notable accuracy of 95%, precision of 93%, recall of 97%, and an F1 Score of 95%. Concurrently, the K-means Clustering method effectively delineated three distinct levels of addiction: less addicted, mildly addicted, and highly addicted. When juxtaposed with existing literature and methodologies, the study's approach showcases superior accuracy and a refined classification system, offering a potent tool for healthcare practitioners to identify and address alcohol addiction. Potential avenues for future exploration include integrating varied algorithms and probing into other facets of addiction. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-03-28 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://diversitasjournal.com.br/diversitas_journal/article/view/3131 10.48017/dj.v10i1.3131 |
| url |
https://diversitasjournal.com.br/diversitas_journal/article/view/3131 |
| identifier_str_mv |
10.48017/dj.v10i1.3131 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://diversitasjournal.com.br/diversitas_journal/article/view/3131/2853 |
| dc.rights.driver.fl_str_mv |
Copyright (c) 2025 Francis Balazon https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Copyright (c) 2025 Francis Balazon https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Estadual de Alagoas - Eduneal |
| publisher.none.fl_str_mv |
Universidade Estadual de Alagoas - Eduneal |
| dc.source.none.fl_str_mv |
Diversitas Journal; Vol. 10 No. 1 (2025): Scientific integration for social and environmental strengthening. Diversitas Journal; Vol. 10 Núm. 1 (2025): Integración científica para el fortalecimiento social y ambiental. Diversitas Journal; v. 10 n. 1 (2025): Integração científica para o fortalecimento social e ambiental. 2525-5215 10.48017/dj.v10i1 reponame:Diversitas Journal instname:Universidade Estadual de Alagoas (UNEAL) instacron:UNEAL |
| instname_str |
Universidade Estadual de Alagoas (UNEAL) |
| instacron_str |
UNEAL |
| institution |
UNEAL |
| reponame_str |
Diversitas Journal |
| collection |
Diversitas Journal |
| repository.name.fl_str_mv |
Diversitas Journal - Universidade Estadual de Alagoas (UNEAL) |
| repository.mail.fl_str_mv |
revistadiversitasjournal@gmail.com |
| _version_ |
1831935234384330752 |