Funções convexas e as transformadas de Legendre e Fenchel
Main Author: | |
---|---|
Publication Date: | 2021 |
Format: | Master thesis |
Language: | por |
Source: | Repositório Institucional da UFS |
Download full: | https://ri.ufs.br/jspui/handle/riufs/18015 |
Summary: | The present work addresses the main elements of convex analysis in vector spaces of finite and infinite dimensions. In finite-dimension, it presents fundamental concepts of norms, inner-product, and topology. Then, it defines convex sets and explores their properties. It shows operations that preserve convexity, classic convex sets, and the hyperplane separation theorem. Next, the work presents the convex functions and their properties, from which we can highlight the continuity in open subsets and the existence of the directional derivative. The theoretical framework developed allows presenting the Legendre transform when the convex functions are C 1 and the Fenchel transform for non-smooth convex functions. Among all applications of the Legendre transform, this work highlights the formulation of equations of classical mechanics. A table with selected smooth convex functions and their respective Legendre transform is shown. In infinite dimension, the work develops topological concepts and properties of metric spaces, continuity, Bolzano-Weierstrass theorem, Hilbert and Banach spaces, and Hahn-Banach theorem. Then, it defines interior points, convex sets, and convex functions in Hilbert spaces, defining main properties, especially the existence of the conjugate function in this space. Finally, it shows an application of Jensen’s inequality to solve High School Olympic problems. |
id |
UFS-2_b78c524b21c9ef4fc9a75a033e415106 |
---|---|
oai_identifier_str |
oai:oai:ri.ufs.br:repo_01:riufs/18015 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Silva, Lucas de Melo Pontes eCardoso, José Anderson Valença2023-08-03T20:46:42Z2023-08-03T20:46:42Z2021-02-05SILVA, Lucas de Melo Pontes e. Funções convexas e as transformadas de Legendre e Fenchel. 2021. 123 f. Dissertação (Mestrado Profissional em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2021.https://ri.ufs.br/jspui/handle/riufs/18015The present work addresses the main elements of convex analysis in vector spaces of finite and infinite dimensions. In finite-dimension, it presents fundamental concepts of norms, inner-product, and topology. Then, it defines convex sets and explores their properties. It shows operations that preserve convexity, classic convex sets, and the hyperplane separation theorem. Next, the work presents the convex functions and their properties, from which we can highlight the continuity in open subsets and the existence of the directional derivative. The theoretical framework developed allows presenting the Legendre transform when the convex functions are C 1 and the Fenchel transform for non-smooth convex functions. Among all applications of the Legendre transform, this work highlights the formulation of equations of classical mechanics. A table with selected smooth convex functions and their respective Legendre transform is shown. In infinite dimension, the work develops topological concepts and properties of metric spaces, continuity, Bolzano-Weierstrass theorem, Hilbert and Banach spaces, and Hahn-Banach theorem. Then, it defines interior points, convex sets, and convex functions in Hilbert spaces, defining main properties, especially the existence of the conjugate function in this space. Finally, it shows an application of Jensen’s inequality to solve High School Olympic problems.O presente trabalho aborda os principais elementos da analise convexa em espacos vetoriais de dimensoes finita e infinita. Em dimensao finita, introduz-se conceitos basicos sobre espa¸cos vetoriais e topologia de conjuntos para desenvolver a teoria dos conjuntos convexos. Entao define-se os conjuntos convexos e suas propriedades apresentando exemplos de operacoes que preservam convexidade, conjuntos convexos classicos e o importante teorema da separacao por hiperplano. Em seguida, o trabalho apresenta as funcoes convexas e suas propriedades, das quais podemos destacar a continuidade em subconjuntos abertos e a existencia da derivada direcional. O arcabouco teorico desenvolvido permite apresentar a transformada de Legendre para o caso de funcoes convexas de classe C1 e a transformada de Fenchel para o caso de funcoes convexas nao suaves. Apresenta-se aplicacoes da transformada de Legendre, em especial, na formulacao de equaces da mecanica classica alem uma tabela com funcoes e transformadas. Em dimensao infinita, introduz-se conceitos topologicos e propriedades de espa¸cos m´etricos, continuidade, Teorema de Bolzano-Weierstrass, espacos de Hilbert e Banach e o Teorema de Hahn-Banach. O trabalho segue definindo pontos interiores, conjuntos e funcoes convexas em espacos de Hilbert, definindo importantes propriedades, em especial, a existencia da conjugada nesse espaco. Por fim, apresenta-se aplicacao da desigualdade de Jensen para resolucao de problemas olımpicos do Ensino Medio.São CristóvãoporFunções convexasFunções de LegendreEspaços de BanachEspaço de HilbertAnálise convexaConjuntos convexosFunções convexasTransformada de Legendre e FenchelEspaços de Banach e HilbertConvex analysisConvex setsConvex functionsLegendre transformFenchel tranformBanach and Hilbert spacesCIENCIAS EXATAS E DA TERRA::MATEMATICAFunções convexas e as transformadas de Legendre e Fenchelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMestrado Profissional em MatemáticaUniversidade Federal de Sergipe (UFS)reponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/18015/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51TEXTLUCAS_MELO_PONTES_SILVA.pdf.txtLUCAS_MELO_PONTES_SILVA.pdf.txtExtracted texttext/plain192090https://ri.ufs.br/jspui/bitstream/riufs/18015/3/LUCAS_MELO_PONTES_SILVA.pdf.txtc2077805ee067b5bb0932adbde269010MD53THUMBNAILLUCAS_MELO_PONTES_SILVA.pdf.jpgLUCAS_MELO_PONTES_SILVA.pdf.jpgGenerated Thumbnailimage/jpeg1267https://ri.ufs.br/jspui/bitstream/riufs/18015/4/LUCAS_MELO_PONTES_SILVA.pdf.jpgd9e94414a151a15cb62c8753d29278afMD54ORIGINALLUCAS_MELO_PONTES_SILVA.pdfLUCAS_MELO_PONTES_SILVA.pdfapplication/pdf7054071https://ri.ufs.br/jspui/bitstream/riufs/18015/5/LUCAS_MELO_PONTES_SILVA.pdf0505a015c28ca75cd2c46189c3994cf4MD55riufs/180152023-08-10 14:16:14.003oai:oai:ri.ufs.br:repo_01:riufs/18015TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2023-08-10T17:16:14Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Funções convexas e as transformadas de Legendre e Fenchel |
title |
Funções convexas e as transformadas de Legendre e Fenchel |
spellingShingle |
Funções convexas e as transformadas de Legendre e Fenchel Silva, Lucas de Melo Pontes e Funções convexas Funções de Legendre Espaços de Banach Espaço de Hilbert Análise convexa Conjuntos convexos Funções convexas Transformada de Legendre e Fenchel Espaços de Banach e Hilbert Convex analysis Convex sets Convex functions Legendre transform Fenchel tranform Banach and Hilbert spaces CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Funções convexas e as transformadas de Legendre e Fenchel |
title_full |
Funções convexas e as transformadas de Legendre e Fenchel |
title_fullStr |
Funções convexas e as transformadas de Legendre e Fenchel |
title_full_unstemmed |
Funções convexas e as transformadas de Legendre e Fenchel |
title_sort |
Funções convexas e as transformadas de Legendre e Fenchel |
author |
Silva, Lucas de Melo Pontes e |
author_facet |
Silva, Lucas de Melo Pontes e |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Lucas de Melo Pontes e |
dc.contributor.advisor1.fl_str_mv |
Cardoso, José Anderson Valença |
contributor_str_mv |
Cardoso, José Anderson Valença |
dc.subject.por.fl_str_mv |
Funções convexas Funções de Legendre Espaços de Banach Espaço de Hilbert Análise convexa Conjuntos convexos Funções convexas Transformada de Legendre e Fenchel Espaços de Banach e Hilbert |
topic |
Funções convexas Funções de Legendre Espaços de Banach Espaço de Hilbert Análise convexa Conjuntos convexos Funções convexas Transformada de Legendre e Fenchel Espaços de Banach e Hilbert Convex analysis Convex sets Convex functions Legendre transform Fenchel tranform Banach and Hilbert spaces CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Convex analysis Convex sets Convex functions Legendre transform Fenchel tranform Banach and Hilbert spaces |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
The present work addresses the main elements of convex analysis in vector spaces of finite and infinite dimensions. In finite-dimension, it presents fundamental concepts of norms, inner-product, and topology. Then, it defines convex sets and explores their properties. It shows operations that preserve convexity, classic convex sets, and the hyperplane separation theorem. Next, the work presents the convex functions and their properties, from which we can highlight the continuity in open subsets and the existence of the directional derivative. The theoretical framework developed allows presenting the Legendre transform when the convex functions are C 1 and the Fenchel transform for non-smooth convex functions. Among all applications of the Legendre transform, this work highlights the formulation of equations of classical mechanics. A table with selected smooth convex functions and their respective Legendre transform is shown. In infinite dimension, the work develops topological concepts and properties of metric spaces, continuity, Bolzano-Weierstrass theorem, Hilbert and Banach spaces, and Hahn-Banach theorem. Then, it defines interior points, convex sets, and convex functions in Hilbert spaces, defining main properties, especially the existence of the conjugate function in this space. Finally, it shows an application of Jensen’s inequality to solve High School Olympic problems. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-02-05 |
dc.date.accessioned.fl_str_mv |
2023-08-03T20:46:42Z |
dc.date.available.fl_str_mv |
2023-08-03T20:46:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Lucas de Melo Pontes e. Funções convexas e as transformadas de Legendre e Fenchel. 2021. 123 f. Dissertação (Mestrado Profissional em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2021. |
dc.identifier.uri.fl_str_mv |
https://ri.ufs.br/jspui/handle/riufs/18015 |
identifier_str_mv |
SILVA, Lucas de Melo Pontes e. Funções convexas e as transformadas de Legendre e Fenchel. 2021. 123 f. Dissertação (Mestrado Profissional em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2021. |
url |
https://ri.ufs.br/jspui/handle/riufs/18015 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.program.fl_str_mv |
Mestrado Profissional em Matemática |
dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe (UFS) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/18015/1/license.txt https://ri.ufs.br/jspui/bitstream/riufs/18015/3/LUCAS_MELO_PONTES_SILVA.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/18015/4/LUCAS_MELO_PONTES_SILVA.pdf.jpg https://ri.ufs.br/jspui/bitstream/riufs/18015/5/LUCAS_MELO_PONTES_SILVA.pdf |
bitstream.checksum.fl_str_mv |
098cbbf65c2c15e1fb2e49c5d306a44c c2077805ee067b5bb0932adbde269010 d9e94414a151a15cb62c8753d29278af 0505a015c28ca75cd2c46189c3994cf4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1834469971991724032 |