Export Ready — 

Funções convexas e as transformadas de Legendre e Fenchel

Bibliographic Details
Main Author: Silva, Lucas de Melo Pontes e
Publication Date: 2021
Format: Master thesis
Language: por
Source: Repositório Institucional da UFS
Download full: https://ri.ufs.br/jspui/handle/riufs/18015
Summary: The present work addresses the main elements of convex analysis in vector spaces of finite and infinite dimensions. In finite-dimension, it presents fundamental concepts of norms, inner-product, and topology. Then, it defines convex sets and explores their properties. It shows operations that preserve convexity, classic convex sets, and the hyperplane separation theorem. Next, the work presents the convex functions and their properties, from which we can highlight the continuity in open subsets and the existence of the directional derivative. The theoretical framework developed allows presenting the Legendre transform when the convex functions are C 1 and the Fenchel transform for non-smooth convex functions. Among all applications of the Legendre transform, this work highlights the formulation of equations of classical mechanics. A table with selected smooth convex functions and their respective Legendre transform is shown. In infinite dimension, the work develops topological concepts and properties of metric spaces, continuity, Bolzano-Weierstrass theorem, Hilbert and Banach spaces, and Hahn-Banach theorem. Then, it defines interior points, convex sets, and convex functions in Hilbert spaces, defining main properties, especially the existence of the conjugate function in this space. Finally, it shows an application of Jensen’s inequality to solve High School Olympic problems.
id UFS-2_b78c524b21c9ef4fc9a75a033e415106
oai_identifier_str oai:oai:ri.ufs.br:repo_01:riufs/18015
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Silva, Lucas de Melo Pontes eCardoso, José Anderson Valença2023-08-03T20:46:42Z2023-08-03T20:46:42Z2021-02-05SILVA, Lucas de Melo Pontes e. Funções convexas e as transformadas de Legendre e Fenchel. 2021. 123 f. Dissertação (Mestrado Profissional em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2021.https://ri.ufs.br/jspui/handle/riufs/18015The present work addresses the main elements of convex analysis in vector spaces of finite and infinite dimensions. In finite-dimension, it presents fundamental concepts of norms, inner-product, and topology. Then, it defines convex sets and explores their properties. It shows operations that preserve convexity, classic convex sets, and the hyperplane separation theorem. Next, the work presents the convex functions and their properties, from which we can highlight the continuity in open subsets and the existence of the directional derivative. The theoretical framework developed allows presenting the Legendre transform when the convex functions are C 1 and the Fenchel transform for non-smooth convex functions. Among all applications of the Legendre transform, this work highlights the formulation of equations of classical mechanics. A table with selected smooth convex functions and their respective Legendre transform is shown. In infinite dimension, the work develops topological concepts and properties of metric spaces, continuity, Bolzano-Weierstrass theorem, Hilbert and Banach spaces, and Hahn-Banach theorem. Then, it defines interior points, convex sets, and convex functions in Hilbert spaces, defining main properties, especially the existence of the conjugate function in this space. Finally, it shows an application of Jensen’s inequality to solve High School Olympic problems.O presente trabalho aborda os principais elementos da analise convexa em espacos vetoriais de dimensoes finita e infinita. Em dimensao finita, introduz-se conceitos basicos sobre espa¸cos vetoriais e topologia de conjuntos para desenvolver a teoria dos conjuntos convexos. Entao define-se os conjuntos convexos e suas propriedades apresentando exemplos de operacoes que preservam convexidade, conjuntos convexos classicos e o importante teorema da separacao por hiperplano. Em seguida, o trabalho apresenta as funcoes convexas e suas propriedades, das quais podemos destacar a continuidade em subconjuntos abertos e a existencia da derivada direcional. O arcabouco teorico desenvolvido permite apresentar a transformada de Legendre para o caso de funcoes convexas de classe C1 e a transformada de Fenchel para o caso de funcoes convexas nao suaves. Apresenta-se aplicacoes da transformada de Legendre, em especial, na formulacao de equaces da mecanica classica alem uma tabela com funcoes e transformadas. Em dimensao infinita, introduz-se conceitos topologicos e propriedades de espa¸cos m´etricos, continuidade, Teorema de Bolzano-Weierstrass, espacos de Hilbert e Banach e o Teorema de Hahn-Banach. O trabalho segue definindo pontos interiores, conjuntos e funcoes convexas em espacos de Hilbert, definindo importantes propriedades, em especial, a existencia da conjugada nesse espaco. Por fim, apresenta-se aplicacao da desigualdade de Jensen para resolucao de problemas olımpicos do Ensino Medio.São CristóvãoporFunções convexasFunções de LegendreEspaços de BanachEspaço de HilbertAnálise convexaConjuntos convexosFunções convexasTransformada de Legendre e FenchelEspaços de Banach e HilbertConvex analysisConvex setsConvex functionsLegendre transformFenchel tranformBanach and Hilbert spacesCIENCIAS EXATAS E DA TERRA::MATEMATICAFunções convexas e as transformadas de Legendre e Fenchelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMestrado Profissional em MatemáticaUniversidade Federal de Sergipe (UFS)reponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/18015/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51TEXTLUCAS_MELO_PONTES_SILVA.pdf.txtLUCAS_MELO_PONTES_SILVA.pdf.txtExtracted texttext/plain192090https://ri.ufs.br/jspui/bitstream/riufs/18015/3/LUCAS_MELO_PONTES_SILVA.pdf.txtc2077805ee067b5bb0932adbde269010MD53THUMBNAILLUCAS_MELO_PONTES_SILVA.pdf.jpgLUCAS_MELO_PONTES_SILVA.pdf.jpgGenerated Thumbnailimage/jpeg1267https://ri.ufs.br/jspui/bitstream/riufs/18015/4/LUCAS_MELO_PONTES_SILVA.pdf.jpgd9e94414a151a15cb62c8753d29278afMD54ORIGINALLUCAS_MELO_PONTES_SILVA.pdfLUCAS_MELO_PONTES_SILVA.pdfapplication/pdf7054071https://ri.ufs.br/jspui/bitstream/riufs/18015/5/LUCAS_MELO_PONTES_SILVA.pdf0505a015c28ca75cd2c46189c3994cf4MD55riufs/180152023-08-10 14:16:14.003oai:oai:ri.ufs.br:repo_01:riufs/18015TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2023-08-10T17:16:14Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Funções convexas e as transformadas de Legendre e Fenchel
title Funções convexas e as transformadas de Legendre e Fenchel
spellingShingle Funções convexas e as transformadas de Legendre e Fenchel
Silva, Lucas de Melo Pontes e
Funções convexas
Funções de Legendre
Espaços de Banach
Espaço de Hilbert
Análise convexa
Conjuntos convexos
Funções convexas
Transformada de Legendre e Fenchel
Espaços de Banach e Hilbert
Convex analysis
Convex sets
Convex functions
Legendre transform
Fenchel tranform
Banach and Hilbert spaces
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Funções convexas e as transformadas de Legendre e Fenchel
title_full Funções convexas e as transformadas de Legendre e Fenchel
title_fullStr Funções convexas e as transformadas de Legendre e Fenchel
title_full_unstemmed Funções convexas e as transformadas de Legendre e Fenchel
title_sort Funções convexas e as transformadas de Legendre e Fenchel
author Silva, Lucas de Melo Pontes e
author_facet Silva, Lucas de Melo Pontes e
author_role author
dc.contributor.author.fl_str_mv Silva, Lucas de Melo Pontes e
dc.contributor.advisor1.fl_str_mv Cardoso, José Anderson Valença
contributor_str_mv Cardoso, José Anderson Valença
dc.subject.por.fl_str_mv Funções convexas
Funções de Legendre
Espaços de Banach
Espaço de Hilbert
Análise convexa
Conjuntos convexos
Funções convexas
Transformada de Legendre e Fenchel
Espaços de Banach e Hilbert
topic Funções convexas
Funções de Legendre
Espaços de Banach
Espaço de Hilbert
Análise convexa
Conjuntos convexos
Funções convexas
Transformada de Legendre e Fenchel
Espaços de Banach e Hilbert
Convex analysis
Convex sets
Convex functions
Legendre transform
Fenchel tranform
Banach and Hilbert spaces
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Convex analysis
Convex sets
Convex functions
Legendre transform
Fenchel tranform
Banach and Hilbert spaces
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description The present work addresses the main elements of convex analysis in vector spaces of finite and infinite dimensions. In finite-dimension, it presents fundamental concepts of norms, inner-product, and topology. Then, it defines convex sets and explores their properties. It shows operations that preserve convexity, classic convex sets, and the hyperplane separation theorem. Next, the work presents the convex functions and their properties, from which we can highlight the continuity in open subsets and the existence of the directional derivative. The theoretical framework developed allows presenting the Legendre transform when the convex functions are C 1 and the Fenchel transform for non-smooth convex functions. Among all applications of the Legendre transform, this work highlights the formulation of equations of classical mechanics. A table with selected smooth convex functions and their respective Legendre transform is shown. In infinite dimension, the work develops topological concepts and properties of metric spaces, continuity, Bolzano-Weierstrass theorem, Hilbert and Banach spaces, and Hahn-Banach theorem. Then, it defines interior points, convex sets, and convex functions in Hilbert spaces, defining main properties, especially the existence of the conjugate function in this space. Finally, it shows an application of Jensen’s inequality to solve High School Olympic problems.
publishDate 2021
dc.date.issued.fl_str_mv 2021-02-05
dc.date.accessioned.fl_str_mv 2023-08-03T20:46:42Z
dc.date.available.fl_str_mv 2023-08-03T20:46:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Lucas de Melo Pontes e. Funções convexas e as transformadas de Legendre e Fenchel. 2021. 123 f. Dissertação (Mestrado Profissional em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2021.
dc.identifier.uri.fl_str_mv https://ri.ufs.br/jspui/handle/riufs/18015
identifier_str_mv SILVA, Lucas de Melo Pontes e. Funções convexas e as transformadas de Legendre e Fenchel. 2021. 123 f. Dissertação (Mestrado Profissional em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2021.
url https://ri.ufs.br/jspui/handle/riufs/18015
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Mestrado Profissional em Matemática
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe (UFS)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/18015/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/18015/3/LUCAS_MELO_PONTES_SILVA.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/18015/4/LUCAS_MELO_PONTES_SILVA.pdf.jpg
https://ri.ufs.br/jspui/bitstream/riufs/18015/5/LUCAS_MELO_PONTES_SILVA.pdf
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
c2077805ee067b5bb0932adbde269010
d9e94414a151a15cb62c8753d29278af
0505a015c28ca75cd2c46189c3994cf4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1834469971991724032