Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar

Detalhes bibliográficos
Autor(a) principal: Rossatto, Felipe Copceski
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPel - Guaiaca
Texto Completo: http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/14182
Resumo: Neste trabalho, propõe-se um modelo baseado em Redes Neurais Convolucionais Recorrentes (RNCR), para previsão meteorológica de curto prazo nowcasting. Esta abordagem é uma alternativa a técnicas tradicionais de extrapolação estatística. Para isso, foi utilizada uma RNCR supervisionada de aprendizagem preditiva conhecida como PredRNN++. Foram utilizados dados (imagens) de quatro radares localizados no sul do Brasil, disponíveis para acesso gratuito no site do INPE (Instituto Nacional de Pesquisas Espaciais), como entrada e saída da rede. Na saída, o alvo ou professor, são imagens de 6 a 120 minutos à frente no tempo, em relação a entrada, ou seja, o que se deseja prever. Para se verificar a qualidade da previsão gerada pela PredRNN++, além de uma análise empírica das imagens previstas, utilizam-se as métricas estatísticas RMSE, SSIM e MAE explorando um evento extremo, ocorrido no sul do Brasil, em 12 de junho de 2018. A rede mostrou-se uma alternativa viável para previsão de nowcasting, uma vez que reproduz a intensidade e a localização dos sistemas emulados.
id UFPL_7608d98d1b9d3b51a4e8a7ace9255a6a
oai_identifier_str oai:guaiaca.ufpel.edu.br:prefix/14182
network_acronym_str UFPL
network_name_str Repositório Institucional da UFPel - Guaiaca
repository_id_str
spelling 2024-10-02T20:16:41Z2024-10-022024-10-02T20:16:41Z2023-09-04ROSSATTO, Felipe Copceski. Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar. 2023. 160 f. Dissertação (Mestrado em Modelagem Matemática) - Instituto de Física e Matemática, Universidade Federal de Pelotas, Pelotas, 2023.http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/14182Neste trabalho, propõe-se um modelo baseado em Redes Neurais Convolucionais Recorrentes (RNCR), para previsão meteorológica de curto prazo nowcasting. Esta abordagem é uma alternativa a técnicas tradicionais de extrapolação estatística. Para isso, foi utilizada uma RNCR supervisionada de aprendizagem preditiva conhecida como PredRNN++. Foram utilizados dados (imagens) de quatro radares localizados no sul do Brasil, disponíveis para acesso gratuito no site do INPE (Instituto Nacional de Pesquisas Espaciais), como entrada e saída da rede. Na saída, o alvo ou professor, são imagens de 6 a 120 minutos à frente no tempo, em relação a entrada, ou seja, o que se deseja prever. Para se verificar a qualidade da previsão gerada pela PredRNN++, além de uma análise empírica das imagens previstas, utilizam-se as métricas estatísticas RMSE, SSIM e MAE explorando um evento extremo, ocorrido no sul do Brasil, em 12 de junho de 2018. A rede mostrou-se uma alternativa viável para previsão de nowcasting, uma vez que reproduz a intensidade e a localização dos sistemas emulados.In this study, a model based on Recurrent Convolutional Neural Networks (RCNN) is proposed for short-term meteorological forecasting (nowcasting). This approach presents an alternative to traditional statistical extrapolation techniques. The chosen methodology involves the implementation of a supervised predictive learning RCNN model known as PredRNN++. The model is trained and evaluated using data in the form of images captured by four radars situated in the southern region of Brazil. These radar images are made freely accessible via the website of the National Institute for Space Research (INPE). The images serve as both input and output for the neural network. For the output, the model aims to predict images ranging from 6 to 120 minutes ahead in time, relative to the provided input images. The forecasted images are compared against the actual observations to assess the accuracy of the PredRNN++ model. This evaluation process involves empirical analysis of the predicted images, along with the application of statistical metrics such as Root Mean Square Error (RMSE), Structural Similarity Index (SSIM), and Mean Absolute Error (MAE). The assessment focuses on an extreme weather event that occurred in the southern region of Brazil on June 12, 2018. The outcomes of the study indicate that the PredRNN++ model demonstrates promise as a viable alternative for nowcasting predictions. This is attributed to its ability to effectively replicate the intensity and spatial distribution of the emulated meteorological systems.OutrosporUniversidade Federal de PelotasPrograma de Pós-Graduação em Modelagem MatemáticaUFPelBrasilCC BY-NC-SAinfo:eu-repo/semantics/openAccessCIENCIAS EXATAS E DA TERRAMATEMATICAMETEOROLOGIARedes neuraisMeteorologiaNowcastingRadarNeural networksMeteorologyRedes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radarRecurrent convolutional neural networks applied to short-term weather forecasting through radar imagesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://lattes.cnpq.br/6365148459233818https://orcid.org/0000-0002-4042-6335http://lattes.cnpq.br/9865056179221557Shiguemori, Élcio Hideitihttp://lattes.cnpq.br/7243145638158319Calvetti, Leonardohttp://lattes.cnpq.br/1621353966900001Härter, Fabrício PereiraRossatto, Felipe Copceskireponame:Repositório Institucional da UFPel - Guaiacainstname:Universidade Federal de Pelotas (UFPEL)instacron:UFPELLICENSElicense.txtlicense.txttext/plain; charset=utf-81960http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/14182/2/license.txta963c7f783e32dba7010280c7b5ea154MD52open accessTEXTDissertacao_Felipe_Rossatto.pdf.txtDissertacao_Felipe_Rossatto.pdf.txtExtracted texttext/plain108082http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/14182/3/Dissertacao_Felipe_Rossatto.pdf.txtea976fa0d392f2d3f13fb536a8ed6b50MD53open accessTHUMBNAILDissertacao_Felipe_Rossatto.pdf.jpgDissertacao_Felipe_Rossatto.pdf.jpgGenerated Thumbnailimage/jpeg1264http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/14182/4/Dissertacao_Felipe_Rossatto.pdf.jpg048a349d26da77738acb98e44f286a5fMD54open accessORIGINALDissertacao_Felipe_Rossatto.pdfDissertacao_Felipe_Rossatto.pdfapplication/pdf4319338http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/14182/1/Dissertacao_Felipe_Rossatto.pdfa120be7d3a88511a3a0af492a4f6e93dMD51open accessprefix/141822024-10-03 03:03:27.862open accessoai:guaiaca.ufpel.edu.br:prefix/14182TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkkgLSBDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8ocykgYXV0b3IoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIChSSSkgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVsb3RhcyAoVUZQZWwpIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCB0cmFkdXppciAKKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIAplIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW87CgpJSSAtIFZvY8OqIGNvbmNvcmRhIHF1ZSBvIFJJIGRhIFVGUGVsIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gCnBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvOwoKSUlJIC0gVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgbyBSSSBkYSBVRlBlbCBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFja3VwIAplIHByZXNlcnZhw6fDo287CgpJViAtIFZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHB1YmxpY2HDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gClZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHB1YmxpY2HDp8OjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyAKZGUgbmluZ3XDqW07CgpWIC0gQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBSSSBkYSBVRlBlbCBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhOwoKVkkgLSBDQVNPIEEgUFVCTElDQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VCk9VVFJBIE9SR0FOSVpBw4fDg08sIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIFRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyAKRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETzsKClZJSSAtIE8gUkkgZGEgVUZQZWwgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyAKYXV0b3JhaXMgZGEgcHVibGljYcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://repositorio.ufpel.edu.br/oai/requestrippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.bropendoar:2024-10-03T06:03:27Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)false
dc.title.pt_BR.fl_str_mv Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar
dc.title.alternative.pt_BR.fl_str_mv Recurrent convolutional neural networks applied to short-term weather forecasting through radar images
title Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar
spellingShingle Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar
Rossatto, Felipe Copceski
CIENCIAS EXATAS E DA TERRA
Redes neurais
Meteorologia
Nowcasting
Radar
Neural networks
Meteorology
MATEMATICA
METEOROLOGIA
title_short Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar
title_full Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar
title_fullStr Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar
title_full_unstemmed Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar
title_sort Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar
author Rossatto, Felipe Copceski
author_facet Rossatto, Felipe Copceski
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6365148459233818
dc.contributor.advisorID.pt_BR.fl_str_mv https://orcid.org/0000-0002-4042-6335
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9865056179221557
dc.contributor.advisor-co1.fl_str_mv Shiguemori, Élcio Hideiti
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/7243145638158319
dc.contributor.advisor-co2.fl_str_mv Calvetti, Leonardo
dc.contributor.advisor-co2Lattes.fl_str_mv http://lattes.cnpq.br/1621353966900001
dc.contributor.advisor1.fl_str_mv Härter, Fabrício Pereira
dc.contributor.author.fl_str_mv Rossatto, Felipe Copceski
contributor_str_mv Shiguemori, Élcio Hideiti
Calvetti, Leonardo
Härter, Fabrício Pereira
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA
topic CIENCIAS EXATAS E DA TERRA
Redes neurais
Meteorologia
Nowcasting
Radar
Neural networks
Meteorology
MATEMATICA
METEOROLOGIA
dc.subject.por.fl_str_mv Redes neurais
Meteorologia
Nowcasting
Radar
Neural networks
Meteorology
dc.subject.cnpq1.pt_BR.fl_str_mv MATEMATICA
dc.subject.cnpq2.pt_BR.fl_str_mv METEOROLOGIA
description Neste trabalho, propõe-se um modelo baseado em Redes Neurais Convolucionais Recorrentes (RNCR), para previsão meteorológica de curto prazo nowcasting. Esta abordagem é uma alternativa a técnicas tradicionais de extrapolação estatística. Para isso, foi utilizada uma RNCR supervisionada de aprendizagem preditiva conhecida como PredRNN++. Foram utilizados dados (imagens) de quatro radares localizados no sul do Brasil, disponíveis para acesso gratuito no site do INPE (Instituto Nacional de Pesquisas Espaciais), como entrada e saída da rede. Na saída, o alvo ou professor, são imagens de 6 a 120 minutos à frente no tempo, em relação a entrada, ou seja, o que se deseja prever. Para se verificar a qualidade da previsão gerada pela PredRNN++, além de uma análise empírica das imagens previstas, utilizam-se as métricas estatísticas RMSE, SSIM e MAE explorando um evento extremo, ocorrido no sul do Brasil, em 12 de junho de 2018. A rede mostrou-se uma alternativa viável para previsão de nowcasting, uma vez que reproduz a intensidade e a localização dos sistemas emulados.
publishDate 2023
dc.date.issued.fl_str_mv 2023-09-04
dc.date.accessioned.fl_str_mv 2024-10-02T20:16:41Z
dc.date.available.fl_str_mv 2024-10-02
2024-10-02T20:16:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ROSSATTO, Felipe Copceski. Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar. 2023. 160 f. Dissertação (Mestrado em Modelagem Matemática) - Instituto de Física e Matemática, Universidade Federal de Pelotas, Pelotas, 2023.
dc.identifier.uri.fl_str_mv http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/14182
identifier_str_mv ROSSATTO, Felipe Copceski. Redes neurais convolucionais recorrentes aplicadas a previsão meteorológica de curto prazo através de imagens de radar. 2023. 160 f. Dissertação (Mestrado em Modelagem Matemática) - Instituto de Física e Matemática, Universidade Federal de Pelotas, Pelotas, 2023.
url http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/14182
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv CC BY-NC-SA
info:eu-repo/semantics/openAccess
rights_invalid_str_mv CC BY-NC-SA
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pelotas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Modelagem Matemática
dc.publisher.initials.fl_str_mv UFPel
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pelotas
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPel - Guaiaca
instname:Universidade Federal de Pelotas (UFPEL)
instacron:UFPEL
instname_str Universidade Federal de Pelotas (UFPEL)
instacron_str UFPEL
institution UFPEL
reponame_str Repositório Institucional da UFPel - Guaiaca
collection Repositório Institucional da UFPel - Guaiaca
bitstream.url.fl_str_mv http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/14182/2/license.txt
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/14182/3/Dissertacao_Felipe_Rossatto.pdf.txt
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/14182/4/Dissertacao_Felipe_Rossatto.pdf.jpg
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/14182/1/Dissertacao_Felipe_Rossatto.pdf
bitstream.checksum.fl_str_mv a963c7f783e32dba7010280c7b5ea154
ea976fa0d392f2d3f13fb536a8ed6b50
048a349d26da77738acb98e44f286a5f
a120be7d3a88511a3a0af492a4f6e93d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)
repository.mail.fl_str_mv rippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.br
_version_ 1833858417037410304