Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil

Detalhes bibliográficos
Autor(a) principal: Rossatto, Felipe Copceski
Data de Publicação: 2024
Outros Autores: Härter, Fabrício Pereira, Shiguemori, Elcio Hideiti, Calvetti, Leonardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Ciência e Natura (Online)
Texto Completo: https://periodicos.ufsm.br/cienciaenatura/article/view/87262
Resumo: This work proposes a new computational approach that makes use of Recurrent Convolutional Neural Networks, in which weather radar images a r e used to predict the spread and intensity of storms up to 3 hours in advance, known as nowcasting. To this end, we used images from the meteorological radar located in the city of Chapecó - SC. This data is public and available on the website of the Institute for Space Research (INPE). To this end, we propose to evaluate the use of a recurrent convolutional neural network with spatiotemporal learning called PredRNN++. The results were validated through case studies of storms that occurred in the region covered by the radar used. To evaluate the performance of the neural network, in addition to a visual analysis of the results, the MSE and SSIM metrics were used. The results show that PredRNN++ was able to simulate the shape and location of the weather system.
id UFSM-23_b28cc11d92f3f28e4927c80b07681bfe
oai_identifier_str oai:ojs.pkp.sfu.ca:article/87262
network_acronym_str UFSM-23
network_name_str Revista Ciência e Natura (Online)
repository_id_str
spelling Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, BrazilRedes Neurais Recorrentes aplicadas a previsão de curto prazo utilizando imagens de radares da cidade de Chapecó - SCRecurrent neural networksNowcastingRadarMeteorologyRedes neurais recorrentesNowcastingRadarMeteorologiaThis work proposes a new computational approach that makes use of Recurrent Convolutional Neural Networks, in which weather radar images a r e used to predict the spread and intensity of storms up to 3 hours in advance, known as nowcasting. To this end, we used images from the meteorological radar located in the city of Chapecó - SC. This data is public and available on the website of the Institute for Space Research (INPE). To this end, we propose to evaluate the use of a recurrent convolutional neural network with spatiotemporal learning called PredRNN++. The results were validated through case studies of storms that occurred in the region covered by the radar used. To evaluate the performance of the neural network, in addition to a visual analysis of the results, the MSE and SSIM metrics were used. The results show that PredRNN++ was able to simulate the shape and location of the weather system.Neste trabalho propõe-se uma nova abordagem computacional que faz uso de Redes Neurais Convolucionais Recorrentes, na qual imagens de radar meteorológico são utilizadas para a previsão de propagação e intensidade de tempestades com até 3h de antecedência, conhecida como nowcasting. Para tal, utilizou-se imagens do radar meteorológico localizado na cidade de Chapecó-SC. Esses dados são públicos e estão disponíveis no site do Instituto de Pesquisas Espaciais (INPE). Para isso é proposta a avaliação do emprego de uma rede neural convolucional recorrente de aprendizagem espaço temporal chamada PredRNN++. Os resultados foram validados através de estudos de casos de tempestades ocorridas na região de cobertura do radar utiliza. Para avaliar a performance da rede neural, além de uma análise visual dos resultados, foram utilizadas as métricas MSE e SSIM. Os resultados mostram que a PredRNN++ foi capaz de simular o formato e local onde ocorreu o sistema meteorológico.Universidade Federal de Santa Maria2024-11-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaenatura/article/view/8726210.5902/2179460X87262Ciência e Natura; Vol. 46 No. esp. 1 (2024): ERMAC e ENMC; e87262Ciência e Natura; v. 46 n. esp. 1 (2024): ERMAC e ENMC; e872622179-460X0100-8307reponame:Revista Ciência e Natura (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMenghttps://periodicos.ufsm.br/cienciaenatura/article/view/87262/64467Copyright (c) 2024 Ciência e Naturainfo:eu-repo/semantics/openAccessRossatto, Felipe CopceskiHärter, Fabrício PereiraShiguemori, Elcio HideitiCalvetti, Leonardo2024-11-07T12:59:23Zoai:ojs.pkp.sfu.ca:article/87262Revistahttps://periodicos.ufsm.br/cienciaenatura/indexPUBhttps://periodicos.ufsm.br/cienciaenatura/oaicienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br2179-460X0100-8307opendoar:2024-11-07T12:59:23Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil
Redes Neurais Recorrentes aplicadas a previsão de curto prazo utilizando imagens de radares da cidade de Chapecó - SC
title Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil
spellingShingle Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil
Rossatto, Felipe Copceski
Recurrent neural networks
Nowcasting
Radar
Meteorology
Redes neurais recorrentes
Nowcasting
Radar
Meteorologia
title_short Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil
title_full Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil
title_fullStr Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil
title_full_unstemmed Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil
title_sort Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil
author Rossatto, Felipe Copceski
author_facet Rossatto, Felipe Copceski
Härter, Fabrício Pereira
Shiguemori, Elcio Hideiti
Calvetti, Leonardo
author_role author
author2 Härter, Fabrício Pereira
Shiguemori, Elcio Hideiti
Calvetti, Leonardo
author2_role author
author
author
dc.contributor.author.fl_str_mv Rossatto, Felipe Copceski
Härter, Fabrício Pereira
Shiguemori, Elcio Hideiti
Calvetti, Leonardo
dc.subject.por.fl_str_mv Recurrent neural networks
Nowcasting
Radar
Meteorology
Redes neurais recorrentes
Nowcasting
Radar
Meteorologia
topic Recurrent neural networks
Nowcasting
Radar
Meteorology
Redes neurais recorrentes
Nowcasting
Radar
Meteorologia
description This work proposes a new computational approach that makes use of Recurrent Convolutional Neural Networks, in which weather radar images a r e used to predict the spread and intensity of storms up to 3 hours in advance, known as nowcasting. To this end, we used images from the meteorological radar located in the city of Chapecó - SC. This data is public and available on the website of the Institute for Space Research (INPE). To this end, we propose to evaluate the use of a recurrent convolutional neural network with spatiotemporal learning called PredRNN++. The results were validated through case studies of storms that occurred in the region covered by the radar used. To evaluate the performance of the neural network, in addition to a visual analysis of the results, the MSE and SSIM metrics were used. The results show that PredRNN++ was able to simulate the shape and location of the weather system.
publishDate 2024
dc.date.none.fl_str_mv 2024-11-04
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsm.br/cienciaenatura/article/view/87262
10.5902/2179460X87262
url https://periodicos.ufsm.br/cienciaenatura/article/view/87262
identifier_str_mv 10.5902/2179460X87262
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufsm.br/cienciaenatura/article/view/87262/64467
dc.rights.driver.fl_str_mv Copyright (c) 2024 Ciência e Natura
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2024 Ciência e Natura
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência e Natura; Vol. 46 No. esp. 1 (2024): ERMAC e ENMC; e87262
Ciência e Natura; v. 46 n. esp. 1 (2024): ERMAC e ENMC; e87262
2179-460X
0100-8307
reponame:Revista Ciência e Natura (Online)
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Revista Ciência e Natura (Online)
collection Revista Ciência e Natura (Online)
repository.name.fl_str_mv Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv cienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br
_version_ 1839277889068990464