Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Ciência e Natura (Online) |
Texto Completo: | https://periodicos.ufsm.br/cienciaenatura/article/view/87262 |
Resumo: | This work proposes a new computational approach that makes use of Recurrent Convolutional Neural Networks, in which weather radar images a r e used to predict the spread and intensity of storms up to 3 hours in advance, known as nowcasting. To this end, we used images from the meteorological radar located in the city of Chapecó - SC. This data is public and available on the website of the Institute for Space Research (INPE). To this end, we propose to evaluate the use of a recurrent convolutional neural network with spatiotemporal learning called PredRNN++. The results were validated through case studies of storms that occurred in the region covered by the radar used. To evaluate the performance of the neural network, in addition to a visual analysis of the results, the MSE and SSIM metrics were used. The results show that PredRNN++ was able to simulate the shape and location of the weather system. |
id |
UFSM-23_b28cc11d92f3f28e4927c80b07681bfe |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/87262 |
network_acronym_str |
UFSM-23 |
network_name_str |
Revista Ciência e Natura (Online) |
repository_id_str |
|
spelling |
Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, BrazilRedes Neurais Recorrentes aplicadas a previsão de curto prazo utilizando imagens de radares da cidade de Chapecó - SCRecurrent neural networksNowcastingRadarMeteorologyRedes neurais recorrentesNowcastingRadarMeteorologiaThis work proposes a new computational approach that makes use of Recurrent Convolutional Neural Networks, in which weather radar images a r e used to predict the spread and intensity of storms up to 3 hours in advance, known as nowcasting. To this end, we used images from the meteorological radar located in the city of Chapecó - SC. This data is public and available on the website of the Institute for Space Research (INPE). To this end, we propose to evaluate the use of a recurrent convolutional neural network with spatiotemporal learning called PredRNN++. The results were validated through case studies of storms that occurred in the region covered by the radar used. To evaluate the performance of the neural network, in addition to a visual analysis of the results, the MSE and SSIM metrics were used. The results show that PredRNN++ was able to simulate the shape and location of the weather system.Neste trabalho propõe-se uma nova abordagem computacional que faz uso de Redes Neurais Convolucionais Recorrentes, na qual imagens de radar meteorológico são utilizadas para a previsão de propagação e intensidade de tempestades com até 3h de antecedência, conhecida como nowcasting. Para tal, utilizou-se imagens do radar meteorológico localizado na cidade de Chapecó-SC. Esses dados são públicos e estão disponíveis no site do Instituto de Pesquisas Espaciais (INPE). Para isso é proposta a avaliação do emprego de uma rede neural convolucional recorrente de aprendizagem espaço temporal chamada PredRNN++. Os resultados foram validados através de estudos de casos de tempestades ocorridas na região de cobertura do radar utiliza. Para avaliar a performance da rede neural, além de uma análise visual dos resultados, foram utilizadas as métricas MSE e SSIM. Os resultados mostram que a PredRNN++ foi capaz de simular o formato e local onde ocorreu o sistema meteorológico.Universidade Federal de Santa Maria2024-11-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaenatura/article/view/8726210.5902/2179460X87262Ciência e Natura; Vol. 46 No. esp. 1 (2024): ERMAC e ENMC; e87262Ciência e Natura; v. 46 n. esp. 1 (2024): ERMAC e ENMC; e872622179-460X0100-8307reponame:Revista Ciência e Natura (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMenghttps://periodicos.ufsm.br/cienciaenatura/article/view/87262/64467Copyright (c) 2024 Ciência e Naturainfo:eu-repo/semantics/openAccessRossatto, Felipe CopceskiHärter, Fabrício PereiraShiguemori, Elcio HideitiCalvetti, Leonardo2024-11-07T12:59:23Zoai:ojs.pkp.sfu.ca:article/87262Revistahttps://periodicos.ufsm.br/cienciaenatura/indexPUBhttps://periodicos.ufsm.br/cienciaenatura/oaicienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br2179-460X0100-8307opendoar:2024-11-07T12:59:23Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil Redes Neurais Recorrentes aplicadas a previsão de curto prazo utilizando imagens de radares da cidade de Chapecó - SC |
title |
Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil |
spellingShingle |
Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil Rossatto, Felipe Copceski Recurrent neural networks Nowcasting Radar Meteorology Redes neurais recorrentes Nowcasting Radar Meteorologia |
title_short |
Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil |
title_full |
Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil |
title_fullStr |
Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil |
title_full_unstemmed |
Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil |
title_sort |
Recurrent Neural Networks applied to short-term weather forecasting using radar images from the city of Chapecó, SC, Brazil |
author |
Rossatto, Felipe Copceski |
author_facet |
Rossatto, Felipe Copceski Härter, Fabrício Pereira Shiguemori, Elcio Hideiti Calvetti, Leonardo |
author_role |
author |
author2 |
Härter, Fabrício Pereira Shiguemori, Elcio Hideiti Calvetti, Leonardo |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Rossatto, Felipe Copceski Härter, Fabrício Pereira Shiguemori, Elcio Hideiti Calvetti, Leonardo |
dc.subject.por.fl_str_mv |
Recurrent neural networks Nowcasting Radar Meteorology Redes neurais recorrentes Nowcasting Radar Meteorologia |
topic |
Recurrent neural networks Nowcasting Radar Meteorology Redes neurais recorrentes Nowcasting Radar Meteorologia |
description |
This work proposes a new computational approach that makes use of Recurrent Convolutional Neural Networks, in which weather radar images a r e used to predict the spread and intensity of storms up to 3 hours in advance, known as nowcasting. To this end, we used images from the meteorological radar located in the city of Chapecó - SC. This data is public and available on the website of the Institute for Space Research (INPE). To this end, we propose to evaluate the use of a recurrent convolutional neural network with spatiotemporal learning called PredRNN++. The results were validated through case studies of storms that occurred in the region covered by the radar used. To evaluate the performance of the neural network, in addition to a visual analysis of the results, the MSE and SSIM metrics were used. The results show that PredRNN++ was able to simulate the shape and location of the weather system. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11-04 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufsm.br/cienciaenatura/article/view/87262 10.5902/2179460X87262 |
url |
https://periodicos.ufsm.br/cienciaenatura/article/view/87262 |
identifier_str_mv |
10.5902/2179460X87262 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufsm.br/cienciaenatura/article/view/87262/64467 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2024 Ciência e Natura info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2024 Ciência e Natura |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
dc.source.none.fl_str_mv |
Ciência e Natura; Vol. 46 No. esp. 1 (2024): ERMAC e ENMC; e87262 Ciência e Natura; v. 46 n. esp. 1 (2024): ERMAC e ENMC; e87262 2179-460X 0100-8307 reponame:Revista Ciência e Natura (Online) instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Revista Ciência e Natura (Online) |
collection |
Revista Ciência e Natura (Online) |
repository.name.fl_str_mv |
Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
cienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br |
_version_ |
1839277889068990464 |