Desenvolvimento de Modelos Químico - Quânticos para o Estudo de Complexos com Íons Lantanídeos e Actinídeos

Bibliographic Details
Main Author: Oliveira Freire, Ricardo
Publication Date: 2004
Format: Master thesis
Language: por
Source: Repositório Institucional da UFPE
Download full: https://repositorio.ufpe.br/handle/123456789/8975
Summary: Desde a sua concepção em 1994, o modelo SMLC, Sparkle Model for Lanthanide Complexes, tem sido utilizado apenas para o cálculo das geometrias do estado fundamental de complexos de Eu(III). Neste trabalho, aperfeiçoamos em muito este modelo para o íon Eu(III) e iniciamos o procedimento de extensão do mesmo para os outros íons lantanídeos. Desenvolvemos também uma versão do modelo para actinídeos, SMAC/AM1, em particular para o íon Th(IV). No processo de parametrização destes modelos, dois pontos são de fundamental importância: (i) a escolha de um conjunto de treinamento capaz de representar bem o nosso universo de estruturas de complexos e (ii) a escolha de uma função resposta capaz de possibilitar a reprodução satisfatória das propriedades de interesse, que no nosso caso foram comprimentos e ângulos de ligação envolvendo o íon metálico. Na primeira etapa, a escolha certa de um pequeno, mas representativo conjunto de treinamento foi fundamental, pois no processo de parametrização estas estruturas foram calculadas milhares de vezes até que os parâmetros capazes de reproduzir mais exatamente as estruturas cristalográficas fossem encontrados. Por este motivo, realizamos uma análise de agrupamentos hierárquicos para cada íon utilizando todas as estruturas disponíveis no CSD (Cambridge Structural Database 2003). Esta análise resultou, em geral, na classificação das estruturas em sete grupos distintos onde o critério de separação foi o tipo de ligante presente no complexo. Assim, foi possível, para todos os íons parametrizados, escolher um conjunto de treinamento pequeno, mas capaz de representar qualquer tipo de complexo contendo o íon em questão. Na outra etapa, resolvemos adotar uma função resposta em que as propriedades consideradas, no nosso caso distâncias e ângulos de ligação, estivessem intimamente relacionadas com os parâmetros do íon que estávamos buscando. Esta nova função resposta é composta de duas parcelas: a primeira delas é igual ao quadrado da diferença entre as distâncias interatômicas experimentais, Ri exp e calculadas, Ri calc, que envolvem o íon metálico multiplicado por um peso wi e a segunda parcela é a diferença entre os ângulos experimentais, i exp e os calculados, i calc, em que o íon metálico encontra-se no vértice, multiplicada por um peso wj. Durante o procedimento de parametrização para o íon Eu(III), o primeiro dos lantanídeos a ser parametrizado, inúmeros testes foram realizados e cada termo da função resposta foi exaustivamente analisado até que conseguíssemos encontrar um conjunto de parâmetros que tornasse o nosso método realmente robusto. Com o mesmo procedimento utilizado na concepção dos parâmetros do íon Eu(III), parametrizamos os íons Gd(III) e Tb(III) e estendemos a metodologia para actinídeos - Th(IV). Os modelos foram validados de duas formas distintas. A primeira delas foi através de conjuntos testes contendo várias estruturas para cada íon. A outra forma de validação, foi a realização de cálculos ab initio RHF/STO-3G/ECP para sete estruturas representativas de cada um dos grupos obtidos pela análise de agrupamentos. A análise dos resultados obtidos mostrou que para o íon Eu(III) esta nova versão resolveu vários problemas detectados na versão anterior, SMLC II. Dentre os mais importantes estão: (i) a capacidade de predizer, muito bem, estruturas com qualquer tipo de ligante, ao contrário do SMLC II que só era capaz de predizer muito bem estruturas com ligantes do tipo -dicetonas; (ii) correção dos ligantes nitratos, que nas versões anteriores coordenavam-se de forma monodentada ao íon Eu(III) e que nesta nova versão passaram a coordenar-se corretamente (ligante bidentado); (iii) uma melhora razoável na descrição de ligantes pequenos, como água ou isotiocianato. O avanço do modelo SMLC/AM1 para o íon Eu(III) foi de tal forma significativo que nos possibilitou compará-lo com resultados obtidos a partir de metodologias ab initio. O mesmo foi feito para os outros íons lantanídeos e actnídeos estudados. Para o íon európio (III) o erro médio absoluto obtido com o modelo SMLC/AM1 foi de 0,115 Å e a metodologia ab initio RHF/STO-3G/ECP apresentou um erro médio absoluto de 0,123 Å, ou seja, o modelo SMLC/AM1 foi 6% mais exato. Para os íons Gd(III) e Tb(III), o modelo SMLC/AM1 foi, respectivamente, 16% e 31% mais exato que a metodologia ab initio utilizada. No caso do íon actinídeo Th(IV), o erro médio absoluto obtido com o modelo SMAC/AM1 foi de 0,126 Å e a metodologia ab initio utilizada apresentou um erro de 0,113 Å. Neste caso, o modelo SMAC/AM1 ficou a apenas 10% da metodologia RHF/STO-3G/ECP. Com base nos resultados obtidos com este trabalho, podemos então afirmar que os modelos SMLC/AM1 e SMAC/AM1 apresentaram um nível de exatidão comparável ou, em alguns casos, superior ao da metodologia ab initio, RHF/STO-3G/ECP, na predição, tanto das distâncias entre o íon Ln(III) ou Ac(IV) e os átomos que compõem o poliedro de coordenação, como também entre os átomos do poliedro
id UFPE_3d17a61a268946e573ab512e7e4a18f2
oai_identifier_str oai:repositorio.ufpe.br:123456789/8975
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Desenvolvimento de Modelos Químico - Quânticos para o Estudo de Complexos com Íons Lantanídeos e ActinídeosAvanço do Modelo SMLC/AM1 para o íon Eu(III)ParametrizaçãoEstudo de Complexos com Íons Lantanídeos e ActinídeosDesenvolvimento de Modelos QuímicoDesde a sua concepção em 1994, o modelo SMLC, Sparkle Model for Lanthanide Complexes, tem sido utilizado apenas para o cálculo das geometrias do estado fundamental de complexos de Eu(III). Neste trabalho, aperfeiçoamos em muito este modelo para o íon Eu(III) e iniciamos o procedimento de extensão do mesmo para os outros íons lantanídeos. Desenvolvemos também uma versão do modelo para actinídeos, SMAC/AM1, em particular para o íon Th(IV). No processo de parametrização destes modelos, dois pontos são de fundamental importância: (i) a escolha de um conjunto de treinamento capaz de representar bem o nosso universo de estruturas de complexos e (ii) a escolha de uma função resposta capaz de possibilitar a reprodução satisfatória das propriedades de interesse, que no nosso caso foram comprimentos e ângulos de ligação envolvendo o íon metálico. Na primeira etapa, a escolha certa de um pequeno, mas representativo conjunto de treinamento foi fundamental, pois no processo de parametrização estas estruturas foram calculadas milhares de vezes até que os parâmetros capazes de reproduzir mais exatamente as estruturas cristalográficas fossem encontrados. Por este motivo, realizamos uma análise de agrupamentos hierárquicos para cada íon utilizando todas as estruturas disponíveis no CSD (Cambridge Structural Database 2003). Esta análise resultou, em geral, na classificação das estruturas em sete grupos distintos onde o critério de separação foi o tipo de ligante presente no complexo. Assim, foi possível, para todos os íons parametrizados, escolher um conjunto de treinamento pequeno, mas capaz de representar qualquer tipo de complexo contendo o íon em questão. Na outra etapa, resolvemos adotar uma função resposta em que as propriedades consideradas, no nosso caso distâncias e ângulos de ligação, estivessem intimamente relacionadas com os parâmetros do íon que estávamos buscando. Esta nova função resposta é composta de duas parcelas: a primeira delas é igual ao quadrado da diferença entre as distâncias interatômicas experimentais, Ri exp e calculadas, Ri calc, que envolvem o íon metálico multiplicado por um peso wi e a segunda parcela é a diferença entre os ângulos experimentais, i exp e os calculados, i calc, em que o íon metálico encontra-se no vértice, multiplicada por um peso wj. Durante o procedimento de parametrização para o íon Eu(III), o primeiro dos lantanídeos a ser parametrizado, inúmeros testes foram realizados e cada termo da função resposta foi exaustivamente analisado até que conseguíssemos encontrar um conjunto de parâmetros que tornasse o nosso método realmente robusto. Com o mesmo procedimento utilizado na concepção dos parâmetros do íon Eu(III), parametrizamos os íons Gd(III) e Tb(III) e estendemos a metodologia para actinídeos - Th(IV). Os modelos foram validados de duas formas distintas. A primeira delas foi através de conjuntos testes contendo várias estruturas para cada íon. A outra forma de validação, foi a realização de cálculos ab initio RHF/STO-3G/ECP para sete estruturas representativas de cada um dos grupos obtidos pela análise de agrupamentos. A análise dos resultados obtidos mostrou que para o íon Eu(III) esta nova versão resolveu vários problemas detectados na versão anterior, SMLC II. Dentre os mais importantes estão: (i) a capacidade de predizer, muito bem, estruturas com qualquer tipo de ligante, ao contrário do SMLC II que só era capaz de predizer muito bem estruturas com ligantes do tipo -dicetonas; (ii) correção dos ligantes nitratos, que nas versões anteriores coordenavam-se de forma monodentada ao íon Eu(III) e que nesta nova versão passaram a coordenar-se corretamente (ligante bidentado); (iii) uma melhora razoável na descrição de ligantes pequenos, como água ou isotiocianato. O avanço do modelo SMLC/AM1 para o íon Eu(III) foi de tal forma significativo que nos possibilitou compará-lo com resultados obtidos a partir de metodologias ab initio. O mesmo foi feito para os outros íons lantanídeos e actnídeos estudados. Para o íon európio (III) o erro médio absoluto obtido com o modelo SMLC/AM1 foi de 0,115 Å e a metodologia ab initio RHF/STO-3G/ECP apresentou um erro médio absoluto de 0,123 Å, ou seja, o modelo SMLC/AM1 foi 6% mais exato. Para os íons Gd(III) e Tb(III), o modelo SMLC/AM1 foi, respectivamente, 16% e 31% mais exato que a metodologia ab initio utilizada. No caso do íon actinídeo Th(IV), o erro médio absoluto obtido com o modelo SMAC/AM1 foi de 0,126 Å e a metodologia ab initio utilizada apresentou um erro de 0,113 Å. Neste caso, o modelo SMAC/AM1 ficou a apenas 10% da metodologia RHF/STO-3G/ECP. Com base nos resultados obtidos com este trabalho, podemos então afirmar que os modelos SMLC/AM1 e SMAC/AM1 apresentaram um nível de exatidão comparável ou, em alguns casos, superior ao da metodologia ab initio, RHF/STO-3G/ECP, na predição, tanto das distâncias entre o íon Ln(III) ou Ac(IV) e os átomos que compõem o poliedro de coordenação, como também entre os átomos do poliedroUniversidade Federal de PernambucoMayall Simas, Alfredo Oliveira Freire, Ricardo2014-06-12T23:03:37Z2014-06-12T23:03:37Z2004info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfOliveira Freire, Ricardo; Mayall Simas, Alfredo. Desenvolvimento de Modelos Químico - Quânticos para o Estudo de Complexos com Íons Lantanídeos e Actinídeos. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Química, Universidade Federal de Pernambuco, Recife, 2004.https://repositorio.ufpe.br/handle/123456789/8975porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T07:07:20Zoai:repositorio.ufpe.br:123456789/8975Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:07:20Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Desenvolvimento de Modelos Químico - Quânticos para o Estudo de Complexos com Íons Lantanídeos e Actinídeos
title Desenvolvimento de Modelos Químico - Quânticos para o Estudo de Complexos com Íons Lantanídeos e Actinídeos
spellingShingle Desenvolvimento de Modelos Químico - Quânticos para o Estudo de Complexos com Íons Lantanídeos e Actinídeos
Oliveira Freire, Ricardo
Avanço do Modelo SMLC/AM1 para o íon Eu(III)
Parametrização
Estudo de Complexos com Íons Lantanídeos e Actinídeos
Desenvolvimento de Modelos Químico
title_short Desenvolvimento de Modelos Químico - Quânticos para o Estudo de Complexos com Íons Lantanídeos e Actinídeos
title_full Desenvolvimento de Modelos Químico - Quânticos para o Estudo de Complexos com Íons Lantanídeos e Actinídeos
title_fullStr Desenvolvimento de Modelos Químico - Quânticos para o Estudo de Complexos com Íons Lantanídeos e Actinídeos
title_full_unstemmed Desenvolvimento de Modelos Químico - Quânticos para o Estudo de Complexos com Íons Lantanídeos e Actinídeos
title_sort Desenvolvimento de Modelos Químico - Quânticos para o Estudo de Complexos com Íons Lantanídeos e Actinídeos
author Oliveira Freire, Ricardo
author_facet Oliveira Freire, Ricardo
author_role author
dc.contributor.none.fl_str_mv Mayall Simas, Alfredo
dc.contributor.author.fl_str_mv Oliveira Freire, Ricardo
dc.subject.por.fl_str_mv Avanço do Modelo SMLC/AM1 para o íon Eu(III)
Parametrização
Estudo de Complexos com Íons Lantanídeos e Actinídeos
Desenvolvimento de Modelos Químico
topic Avanço do Modelo SMLC/AM1 para o íon Eu(III)
Parametrização
Estudo de Complexos com Íons Lantanídeos e Actinídeos
Desenvolvimento de Modelos Químico
description Desde a sua concepção em 1994, o modelo SMLC, Sparkle Model for Lanthanide Complexes, tem sido utilizado apenas para o cálculo das geometrias do estado fundamental de complexos de Eu(III). Neste trabalho, aperfeiçoamos em muito este modelo para o íon Eu(III) e iniciamos o procedimento de extensão do mesmo para os outros íons lantanídeos. Desenvolvemos também uma versão do modelo para actinídeos, SMAC/AM1, em particular para o íon Th(IV). No processo de parametrização destes modelos, dois pontos são de fundamental importância: (i) a escolha de um conjunto de treinamento capaz de representar bem o nosso universo de estruturas de complexos e (ii) a escolha de uma função resposta capaz de possibilitar a reprodução satisfatória das propriedades de interesse, que no nosso caso foram comprimentos e ângulos de ligação envolvendo o íon metálico. Na primeira etapa, a escolha certa de um pequeno, mas representativo conjunto de treinamento foi fundamental, pois no processo de parametrização estas estruturas foram calculadas milhares de vezes até que os parâmetros capazes de reproduzir mais exatamente as estruturas cristalográficas fossem encontrados. Por este motivo, realizamos uma análise de agrupamentos hierárquicos para cada íon utilizando todas as estruturas disponíveis no CSD (Cambridge Structural Database 2003). Esta análise resultou, em geral, na classificação das estruturas em sete grupos distintos onde o critério de separação foi o tipo de ligante presente no complexo. Assim, foi possível, para todos os íons parametrizados, escolher um conjunto de treinamento pequeno, mas capaz de representar qualquer tipo de complexo contendo o íon em questão. Na outra etapa, resolvemos adotar uma função resposta em que as propriedades consideradas, no nosso caso distâncias e ângulos de ligação, estivessem intimamente relacionadas com os parâmetros do íon que estávamos buscando. Esta nova função resposta é composta de duas parcelas: a primeira delas é igual ao quadrado da diferença entre as distâncias interatômicas experimentais, Ri exp e calculadas, Ri calc, que envolvem o íon metálico multiplicado por um peso wi e a segunda parcela é a diferença entre os ângulos experimentais, i exp e os calculados, i calc, em que o íon metálico encontra-se no vértice, multiplicada por um peso wj. Durante o procedimento de parametrização para o íon Eu(III), o primeiro dos lantanídeos a ser parametrizado, inúmeros testes foram realizados e cada termo da função resposta foi exaustivamente analisado até que conseguíssemos encontrar um conjunto de parâmetros que tornasse o nosso método realmente robusto. Com o mesmo procedimento utilizado na concepção dos parâmetros do íon Eu(III), parametrizamos os íons Gd(III) e Tb(III) e estendemos a metodologia para actinídeos - Th(IV). Os modelos foram validados de duas formas distintas. A primeira delas foi através de conjuntos testes contendo várias estruturas para cada íon. A outra forma de validação, foi a realização de cálculos ab initio RHF/STO-3G/ECP para sete estruturas representativas de cada um dos grupos obtidos pela análise de agrupamentos. A análise dos resultados obtidos mostrou que para o íon Eu(III) esta nova versão resolveu vários problemas detectados na versão anterior, SMLC II. Dentre os mais importantes estão: (i) a capacidade de predizer, muito bem, estruturas com qualquer tipo de ligante, ao contrário do SMLC II que só era capaz de predizer muito bem estruturas com ligantes do tipo -dicetonas; (ii) correção dos ligantes nitratos, que nas versões anteriores coordenavam-se de forma monodentada ao íon Eu(III) e que nesta nova versão passaram a coordenar-se corretamente (ligante bidentado); (iii) uma melhora razoável na descrição de ligantes pequenos, como água ou isotiocianato. O avanço do modelo SMLC/AM1 para o íon Eu(III) foi de tal forma significativo que nos possibilitou compará-lo com resultados obtidos a partir de metodologias ab initio. O mesmo foi feito para os outros íons lantanídeos e actnídeos estudados. Para o íon európio (III) o erro médio absoluto obtido com o modelo SMLC/AM1 foi de 0,115 Å e a metodologia ab initio RHF/STO-3G/ECP apresentou um erro médio absoluto de 0,123 Å, ou seja, o modelo SMLC/AM1 foi 6% mais exato. Para os íons Gd(III) e Tb(III), o modelo SMLC/AM1 foi, respectivamente, 16% e 31% mais exato que a metodologia ab initio utilizada. No caso do íon actinídeo Th(IV), o erro médio absoluto obtido com o modelo SMAC/AM1 foi de 0,126 Å e a metodologia ab initio utilizada apresentou um erro de 0,113 Å. Neste caso, o modelo SMAC/AM1 ficou a apenas 10% da metodologia RHF/STO-3G/ECP. Com base nos resultados obtidos com este trabalho, podemos então afirmar que os modelos SMLC/AM1 e SMAC/AM1 apresentaram um nível de exatidão comparável ou, em alguns casos, superior ao da metodologia ab initio, RHF/STO-3G/ECP, na predição, tanto das distâncias entre o íon Ln(III) ou Ac(IV) e os átomos que compõem o poliedro de coordenação, como também entre os átomos do poliedro
publishDate 2004
dc.date.none.fl_str_mv 2004
2014-06-12T23:03:37Z
2014-06-12T23:03:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv Oliveira Freire, Ricardo; Mayall Simas, Alfredo. Desenvolvimento de Modelos Químico - Quânticos para o Estudo de Complexos com Íons Lantanídeos e Actinídeos. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Química, Universidade Federal de Pernambuco, Recife, 2004.
https://repositorio.ufpe.br/handle/123456789/8975
identifier_str_mv Oliveira Freire, Ricardo; Mayall Simas, Alfredo. Desenvolvimento de Modelos Químico - Quânticos para o Estudo de Complexos com Íons Lantanídeos e Actinídeos. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Química, Universidade Federal de Pernambuco, Recife, 2004.
url https://repositorio.ufpe.br/handle/123456789/8975
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1834467986831835136