Export Ready — 

Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method.

Bibliographic Details
Main Author: Holanda, Raimir
Publication Date: 2009
Other Authors: Maia, José Everardo Bessa, Paulino, Gabriel
Format: Article
Language: por
Source: Revista Tecnologia (Fortaleza. Online)
Download full: https://ojs.unifor.br/tec/article/view/73
Summary: Network traffic behavior is constantly changing due to issues as high service demand on a given service, network attacks, emergence of new services, among others. Although network traffic characterization and classification is a well-known task, it must mainly be effective in real-time anomalous situations in order to help to keep the network with good performance. Classical approaches such as the use of artificial intelligence mechanisms have been modified in order to attempt requirements. However, in general, such adaptations are slow, need of many resources and a constant participation of the network administrator. This work presents an investigation of a methodology for characterize and classify patterns into broadband network traffic. This methodology is based on flow clustering analysis, a multivariate statistical method employed for discovering associations and structures in collected data. The clustering analysis enables the extraction of patterns of data flows.
id UFOR-3_fb32bab2d624b6da01eb3213ef87fcdd
oai_identifier_str oai:ojs3.ojs.unifor.br:article/73
network_acronym_str UFOR-3
network_name_str Revista Tecnologia (Fortaleza. Online)
repository_id_str
spelling Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method.Caracterização e classificação de tráfego de rede de banda larga usando estatística multivariada.Caracterização e classificação de tráfego. Estatística multivariada.Network traffic behavior is constantly changing due to issues as high service demand on a given service, network attacks, emergence of new services, among others. Although network traffic characterization and classification is a well-known task, it must mainly be effective in real-time anomalous situations in order to help to keep the network with good performance. Classical approaches such as the use of artificial intelligence mechanisms have been modified in order to attempt requirements. However, in general, such adaptations are slow, need of many resources and a constant participation of the network administrator. This work presents an investigation of a methodology for characterize and classify patterns into broadband network traffic. This methodology is based on flow clustering analysis, a multivariate statistical method employed for discovering associations and structures in collected data. The clustering analysis enables the extraction of patterns of data flows.O comportamento do tráfego em backbones de redes está constantemente sendo alterado devido a altas demandas requeridas por um determinado serviço, ataques à rede, surgimento de novos serviços, entre outros. Embora a caracterização e classificação de tráfego de rede seja uma tarefa bem conhecida, ela deve ser necessariamente efetiva em situações anômalas de tempo real, com o propósito de ajudar a manter a rede com bom desempenho. Abordagens clássicas como o uso de mecanismos de inteligência artificial, foram modificadas a fim de tentar alcançar essas exigências. Entretanto, tais ajustes os deixam lentos, necessitando de muitos recursos e da participação constante do administrador da rede. Este trabalho apresenta uma investigação de uma metodologia para caracterizar e classificar padrões em um tráfego de rede em banda larga. Esta metodologia é baseada na análise de agrupamento, um método estatístico multivariado empregado para descobrir associações e estruturas em dados. A análise de agrupamento possibilita a extração de padrões dos fluxos de dados.Universidade de Fortaleza - Unifor2009-05-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.unifor.br/tec/article/view/73Revista Tecnologia; v. 27 n. 2 (2006)2318-07300101-8191reponame:Revista Tecnologia (Fortaleza. Online)instname:Universidade de Fortaleza (UNIFOR)instacron:UFORporhttps://ojs.unifor.br/tec/article/view/73/4441Holanda, RaimirMaia, José Everardo BessaPaulino, Gabrielinfo:eu-repo/semantics/openAccess2017-08-29T13:28:09Zoai:ojs3.ojs.unifor.br:article/73Revistahttps://ojs.unifor.br/tecPUBhttps://ojs.unifor.br/tec/oairevistatecnologia@unifor.br2318-07300101-8191opendoar:2017-08-29T13:28:09Revista Tecnologia (Fortaleza. Online) - Universidade de Fortaleza (UNIFOR)false
dc.title.none.fl_str_mv Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method.
Caracterização e classificação de tráfego de rede de banda larga usando estatística multivariada.
title Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method.
spellingShingle Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method.
Holanda, Raimir
Caracterização e classificação de tráfego. Estatística multivariada.
title_short Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method.
title_full Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method.
title_fullStr Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method.
title_full_unstemmed Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method.
title_sort Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method.
author Holanda, Raimir
author_facet Holanda, Raimir
Maia, José Everardo Bessa
Paulino, Gabriel
author_role author
author2 Maia, José Everardo Bessa
Paulino, Gabriel
author2_role author
author
dc.contributor.author.fl_str_mv Holanda, Raimir
Maia, José Everardo Bessa
Paulino, Gabriel
dc.subject.por.fl_str_mv Caracterização e classificação de tráfego. Estatística multivariada.
topic Caracterização e classificação de tráfego. Estatística multivariada.
description Network traffic behavior is constantly changing due to issues as high service demand on a given service, network attacks, emergence of new services, among others. Although network traffic characterization and classification is a well-known task, it must mainly be effective in real-time anomalous situations in order to help to keep the network with good performance. Classical approaches such as the use of artificial intelligence mechanisms have been modified in order to attempt requirements. However, in general, such adaptations are slow, need of many resources and a constant participation of the network administrator. This work presents an investigation of a methodology for characterize and classify patterns into broadband network traffic. This methodology is based on flow clustering analysis, a multivariate statistical method employed for discovering associations and structures in collected data. The clustering analysis enables the extraction of patterns of data flows.
publishDate 2009
dc.date.none.fl_str_mv 2009-05-20
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.unifor.br/tec/article/view/73
url https://ojs.unifor.br/tec/article/view/73
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://ojs.unifor.br/tec/article/view/73/4441
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Fortaleza - Unifor
publisher.none.fl_str_mv Universidade de Fortaleza - Unifor
dc.source.none.fl_str_mv Revista Tecnologia; v. 27 n. 2 (2006)
2318-0730
0101-8191
reponame:Revista Tecnologia (Fortaleza. Online)
instname:Universidade de Fortaleza (UNIFOR)
instacron:UFOR
instname_str Universidade de Fortaleza (UNIFOR)
instacron_str UFOR
institution UFOR
reponame_str Revista Tecnologia (Fortaleza. Online)
collection Revista Tecnologia (Fortaleza. Online)
repository.name.fl_str_mv Revista Tecnologia (Fortaleza. Online) - Universidade de Fortaleza (UNIFOR)
repository.mail.fl_str_mv revistatecnologia@unifor.br
_version_ 1839257376446742528