Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method.
Main Author: | |
---|---|
Publication Date: | 2009 |
Other Authors: | , |
Format: | Article |
Language: | por |
Source: | Revista Tecnologia (Fortaleza. Online) |
Download full: | https://ojs.unifor.br/tec/article/view/73 |
Summary: | Network traffic behavior is constantly changing due to issues as high service demand on a given service, network attacks, emergence of new services, among others. Although network traffic characterization and classification is a well-known task, it must mainly be effective in real-time anomalous situations in order to help to keep the network with good performance. Classical approaches such as the use of artificial intelligence mechanisms have been modified in order to attempt requirements. However, in general, such adaptations are slow, need of many resources and a constant participation of the network administrator. This work presents an investigation of a methodology for characterize and classify patterns into broadband network traffic. This methodology is based on flow clustering analysis, a multivariate statistical method employed for discovering associations and structures in collected data. The clustering analysis enables the extraction of patterns of data flows. |
id |
UFOR-3_fb32bab2d624b6da01eb3213ef87fcdd |
---|---|
oai_identifier_str |
oai:ojs3.ojs.unifor.br:article/73 |
network_acronym_str |
UFOR-3 |
network_name_str |
Revista Tecnologia (Fortaleza. Online) |
repository_id_str |
|
spelling |
Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method.Caracterização e classificação de tráfego de rede de banda larga usando estatística multivariada.Caracterização e classificação de tráfego. Estatística multivariada.Network traffic behavior is constantly changing due to issues as high service demand on a given service, network attacks, emergence of new services, among others. Although network traffic characterization and classification is a well-known task, it must mainly be effective in real-time anomalous situations in order to help to keep the network with good performance. Classical approaches such as the use of artificial intelligence mechanisms have been modified in order to attempt requirements. However, in general, such adaptations are slow, need of many resources and a constant participation of the network administrator. This work presents an investigation of a methodology for characterize and classify patterns into broadband network traffic. This methodology is based on flow clustering analysis, a multivariate statistical method employed for discovering associations and structures in collected data. The clustering analysis enables the extraction of patterns of data flows.O comportamento do tráfego em backbones de redes está constantemente sendo alterado devido a altas demandas requeridas por um determinado serviço, ataques à rede, surgimento de novos serviços, entre outros. Embora a caracterização e classificação de tráfego de rede seja uma tarefa bem conhecida, ela deve ser necessariamente efetiva em situações anômalas de tempo real, com o propósito de ajudar a manter a rede com bom desempenho. Abordagens clássicas como o uso de mecanismos de inteligência artificial, foram modificadas a fim de tentar alcançar essas exigências. Entretanto, tais ajustes os deixam lentos, necessitando de muitos recursos e da participação constante do administrador da rede. Este trabalho apresenta uma investigação de uma metodologia para caracterizar e classificar padrões em um tráfego de rede em banda larga. Esta metodologia é baseada na análise de agrupamento, um método estatístico multivariado empregado para descobrir associações e estruturas em dados. A análise de agrupamento possibilita a extração de padrões dos fluxos de dados.Universidade de Fortaleza - Unifor2009-05-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.unifor.br/tec/article/view/73Revista Tecnologia; v. 27 n. 2 (2006)2318-07300101-8191reponame:Revista Tecnologia (Fortaleza. Online)instname:Universidade de Fortaleza (UNIFOR)instacron:UFORporhttps://ojs.unifor.br/tec/article/view/73/4441Holanda, RaimirMaia, José Everardo BessaPaulino, Gabrielinfo:eu-repo/semantics/openAccess2017-08-29T13:28:09Zoai:ojs3.ojs.unifor.br:article/73Revistahttps://ojs.unifor.br/tecPUBhttps://ojs.unifor.br/tec/oairevistatecnologia@unifor.br2318-07300101-8191opendoar:2017-08-29T13:28:09Revista Tecnologia (Fortaleza. Online) - Universidade de Fortaleza (UNIFOR)false |
dc.title.none.fl_str_mv |
Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method. Caracterização e classificação de tráfego de rede de banda larga usando estatística multivariada. |
title |
Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method. |
spellingShingle |
Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method. Holanda, Raimir Caracterização e classificação de tráfego. Estatística multivariada. |
title_short |
Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method. |
title_full |
Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method. |
title_fullStr |
Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method. |
title_full_unstemmed |
Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method. |
title_sort |
Broadband Network Traffic Characterization and Classification Using a Multivariate Statistical Method. |
author |
Holanda, Raimir |
author_facet |
Holanda, Raimir Maia, José Everardo Bessa Paulino, Gabriel |
author_role |
author |
author2 |
Maia, José Everardo Bessa Paulino, Gabriel |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Holanda, Raimir Maia, José Everardo Bessa Paulino, Gabriel |
dc.subject.por.fl_str_mv |
Caracterização e classificação de tráfego. Estatística multivariada. |
topic |
Caracterização e classificação de tráfego. Estatística multivariada. |
description |
Network traffic behavior is constantly changing due to issues as high service demand on a given service, network attacks, emergence of new services, among others. Although network traffic characterization and classification is a well-known task, it must mainly be effective in real-time anomalous situations in order to help to keep the network with good performance. Classical approaches such as the use of artificial intelligence mechanisms have been modified in order to attempt requirements. However, in general, such adaptations are slow, need of many resources and a constant participation of the network administrator. This work presents an investigation of a methodology for characterize and classify patterns into broadband network traffic. This methodology is based on flow clustering analysis, a multivariate statistical method employed for discovering associations and structures in collected data. The clustering analysis enables the extraction of patterns of data flows. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-05-20 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.unifor.br/tec/article/view/73 |
url |
https://ojs.unifor.br/tec/article/view/73 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://ojs.unifor.br/tec/article/view/73/4441 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Fortaleza - Unifor |
publisher.none.fl_str_mv |
Universidade de Fortaleza - Unifor |
dc.source.none.fl_str_mv |
Revista Tecnologia; v. 27 n. 2 (2006) 2318-0730 0101-8191 reponame:Revista Tecnologia (Fortaleza. Online) instname:Universidade de Fortaleza (UNIFOR) instacron:UFOR |
instname_str |
Universidade de Fortaleza (UNIFOR) |
instacron_str |
UFOR |
institution |
UFOR |
reponame_str |
Revista Tecnologia (Fortaleza. Online) |
collection |
Revista Tecnologia (Fortaleza. Online) |
repository.name.fl_str_mv |
Revista Tecnologia (Fortaleza. Online) - Universidade de Fortaleza (UNIFOR) |
repository.mail.fl_str_mv |
revistatecnologia@unifor.br |
_version_ |
1839257376446742528 |