Remote sensing and machine learning applied to soil use detection in caatinga bioma

Bibliographic Details
Main Author: Beatriz Fernandes SimplÃcio Sousa
Publication Date: 2009
Format: Master thesis
Language: por
Source: Biblioteca Digital de Teses e Dissertações da UFC
Download full: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5201
Summary: In order to manage adequately natural resources inside a fragile environment, just like Caatinga, one should know its properties and spatial distribution. This work proposes an approach to classify LANDSAT-5 satellite images. These images, corresponding to a semiarid environment located in Iguatu country, Ceara, Brazil, were classified aiming at detecting the Caatinga biome by two type of classifiers based on machinery learning: Multi Layer Perceptron (MLP) and Support Vector Machine (SVM). The static classifier of Maximum Likelihood was also used as comparison to the other two methods. Agriculture, water, anthropical, herbaceous shrub Caatinga (CHA) and dense high Caatinga (CAD) are the five classes defined for classifying. MLP method tests were carried out changing neurons quantity in the intermediate layer. SVM method tests were carried out changing σ, from Gauss function, and penalization parameter (C). Performance of the tests was analyzed by Global Accuracy, Specific Accuracy and Kappa coefficient. The last one calculated by confusion matrix, which has been generated by comparison of classification data and ground control points GPS georreferenced (true points). MLP method presented best performance for tests in which 12 neurons have been attributed to the intermediate layer resulting in Global Accuracy and Kappa values of 82.14% and 0.76, respectively. On the other hand, SVM method presented best performance for tests carried out with C=1000 and σ=2, resulting in Global Accuracy and Kappa values of 86.03% and 0.77, respectively. The Maximum Likelihood classifier presented 81.2% of its pixels correctly classified (Global Accuracy) and K coefficient value of 0.73. The values of Specific Accuracy, which makes it possible to analyze the performance of each individual class, were above 70% in each class. A total 576 km2 area was classified. Between the two types of Caatinga biome considered, herbaceous shrub Caatinga (CHA) comes to be the most common. Therefore, taking into account experimental results, it is possible to conclude that both SVM and MLP methods, which are based on machine learning, show satisfactory performance for classifying Caatinga biome.
id UFC_e4ba8d4031bfbdeeb5f6cad35e07a48a
oai_identifier_str oai:www.teses.ufc.br:3861
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisRemote sensing and machine learning applied to soil use detection in caatinga biomaAprendizado De MÃquina Na DetecÃÃo Do Uso Do Solo No Bioma Caatinga Via Sensoriamento Remoto2009-03-06Adunias dos Santos Teixeira33344423453http://lattes.cnpq.br/9646492923898649Francisco de Assis Tavares Ferreira da Silva28158989420http://lattes.cnpq.br/0504582828060516Arthur PlÃnio de Souza Braga42395194387http://lattes.cnpq.br/1473823107869382 Marisete Dantas de Aquino1225636639161670464334http://lattes.cnpq.br/9991347832980084 Beatriz Fernandes SimplÃcio SousaUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia AgrÃcolaUFCBRInteligÃncia artificial semiÃrido classificaÃÃo de imagens de satÃlite.artificial intelligence semi-arid satellite image classification.IRRIGACAO E DRENAGEMIn order to manage adequately natural resources inside a fragile environment, just like Caatinga, one should know its properties and spatial distribution. This work proposes an approach to classify LANDSAT-5 satellite images. These images, corresponding to a semiarid environment located in Iguatu country, Ceara, Brazil, were classified aiming at detecting the Caatinga biome by two type of classifiers based on machinery learning: Multi Layer Perceptron (MLP) and Support Vector Machine (SVM). The static classifier of Maximum Likelihood was also used as comparison to the other two methods. Agriculture, water, anthropical, herbaceous shrub Caatinga (CHA) and dense high Caatinga (CAD) are the five classes defined for classifying. MLP method tests were carried out changing neurons quantity in the intermediate layer. SVM method tests were carried out changing σ, from Gauss function, and penalization parameter (C). Performance of the tests was analyzed by Global Accuracy, Specific Accuracy and Kappa coefficient. The last one calculated by confusion matrix, which has been generated by comparison of classification data and ground control points GPS georreferenced (true points). MLP method presented best performance for tests in which 12 neurons have been attributed to the intermediate layer resulting in Global Accuracy and Kappa values of 82.14% and 0.76, respectively. On the other hand, SVM method presented best performance for tests carried out with C=1000 and σ=2, resulting in Global Accuracy and Kappa values of 86.03% and 0.77, respectively. The Maximum Likelihood classifier presented 81.2% of its pixels correctly classified (Global Accuracy) and K coefficient value of 0.73. The values of Specific Accuracy, which makes it possible to analyze the performance of each individual class, were above 70% in each class. A total 576 km2 area was classified. Between the two types of Caatinga biome considered, herbaceous shrub Caatinga (CHA) comes to be the most common. Therefore, taking into account experimental results, it is possible to conclude that both SVM and MLP methods, which are based on machine learning, show satisfactory performance for classifying Caatinga biome.O manejo adequado dos recursos naturais em ambientes frÃgeis, como o da Caatinga, requer o conhecimento de suas propriedades e distribuiÃÃo espacial. Desta forma, o presente trabalho propÃe uma abordagem para a classificaÃÃo de imagens do satÃlite LANDSAT-5, correspondente a uma regiÃo semiÃrida localizada no municÃpio de Iguatu no Estado do CearÃ, objetivando detectar o bioma da Caatinga por meio de dois tipos de classificadores baseados em aprendizado de mÃquina: o mÃtodo baseado em Perceptrons de MÃltiplas Camadas-MLP (do inglÃs Multi Layer Perceptron) e o mÃtodo MÃquinas de Vetores de Suporte-SVM (do inglÃs Support Vector Machine). O classificador estatÃstico da mÃxima verossimilhanÃa, por ser amplamente utilizado na literatura, tambÃm foi aplicado à Ãrea em estudo para que o desempenho dos mÃtodos propostos fosse comparado aos destes. Cinco classes foram definidas para a classificaÃÃo, a saber: agricultura, antropizada, Ãgua, caatinga herbÃcea arbustiva (CHA) e caatinga arbÃrea densa (CAD). Para o mÃtodo MLP, foram realizados testes variando a quantidade de neurÃnios na camada intermediÃria. Jà os testes para o mÃtodo SVM consistiram em variar o parÃmetro σ da funÃÃo gaussiana e o parÃmetro de penalizaÃÃo (C). A eficiÃncia dos mÃtodos foi analisada por meio dos coeficientes de ExatidÃo Global, ExatidÃo EspecÃfica e de Kappa calculados por meio dos dados da matriz de confusÃo. Esta, por sua vez, foi gerada para cada mÃtodo a partir da comparaÃÃo entre a classificaÃÃo e os pontos georreferenciados com aparelho GPS (correspondentes à verdade terrestre). O mÃtodo MLP apresentou melhor desempenho para o teste em que 12 neurÃnios foram atribuÃdos à camada intermediÃria, com valores de ExatidÃo Global e de Kappa de 82,14% e 0,76, respectivamente. Jà o mÃtodo SVM apresentou melhor performance para o teste com C=1000 e σ=2 no qual se obteve valores de 86,03% e 0,77 para os coeficientes de ExatidÃo Global e Kappa, respectivamente. O valor de ExatidÃo Global para o classificador estatÃstico da mÃxima verossimilhanÃa permitiu concluir que 81,2% dos pixels foram classificados corretamente e o coeficiente de Kappa para este mÃtodo foi de 0,73. Os valores dos coeficientes de ExatidÃo EspecÃfica, que proporcionam analisar o desempenho dos mÃtodos em cada classe, foram superiores a 70%. A Ãrea total classificada foi de 576 km2 e, dentre as duas classes consideradas para o bioma Caatinga, a predominante à a do tipo caatinga herbÃcea arbustiva (CHA). Assim, por meio dos resultados experimentais obtidos, pode-se afirmar que os mÃtodos SVM e MLP, baseados em aprendizado de mÃquina, apresentaram desempenho satisfatÃrio para a classificaÃÃo do bioma Caatinga.Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5201application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:18:15Zmail@mail.com -
dc.title.en.fl_str_mv Remote sensing and machine learning applied to soil use detection in caatinga bioma
dc.title.alternative.pt.fl_str_mv Aprendizado De MÃquina Na DetecÃÃo Do Uso Do Solo No Bioma Caatinga Via Sensoriamento Remoto
title Remote sensing and machine learning applied to soil use detection in caatinga bioma
spellingShingle Remote sensing and machine learning applied to soil use detection in caatinga bioma
Beatriz Fernandes SimplÃcio Sousa
InteligÃncia artificial
semiÃrido
classificaÃÃo de imagens de satÃlite.
artificial intelligence
semi-arid
satellite image classification.
IRRIGACAO E DRENAGEM
title_short Remote sensing and machine learning applied to soil use detection in caatinga bioma
title_full Remote sensing and machine learning applied to soil use detection in caatinga bioma
title_fullStr Remote sensing and machine learning applied to soil use detection in caatinga bioma
title_full_unstemmed Remote sensing and machine learning applied to soil use detection in caatinga bioma
title_sort Remote sensing and machine learning applied to soil use detection in caatinga bioma
author Beatriz Fernandes SimplÃcio Sousa
author_facet Beatriz Fernandes SimplÃcio Sousa
author_role author
dc.contributor.advisor1.fl_str_mv Adunias dos Santos Teixeira
dc.contributor.advisor1ID.fl_str_mv 33344423453
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9646492923898649
dc.contributor.referee1.fl_str_mv Francisco de Assis Tavares Ferreira da Silva
dc.contributor.referee1ID.fl_str_mv 28158989420
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/0504582828060516
dc.contributor.referee2.fl_str_mv Arthur PlÃnio de Souza Braga
dc.contributor.referee2ID.fl_str_mv 42395194387
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/1473823107869382
dc.contributor.referee3.fl_str_mv Marisete Dantas de Aquino
dc.contributor.referee3ID.fl_str_mv 12256366391
dc.contributor.authorID.fl_str_mv 61670464334
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9991347832980084
dc.contributor.author.fl_str_mv Beatriz Fernandes SimplÃcio Sousa
contributor_str_mv Adunias dos Santos Teixeira
Francisco de Assis Tavares Ferreira da Silva
Arthur PlÃnio de Souza Braga
Marisete Dantas de Aquino
dc.subject.por.fl_str_mv InteligÃncia artificial
semiÃrido
classificaÃÃo de imagens de satÃlite.
topic InteligÃncia artificial
semiÃrido
classificaÃÃo de imagens de satÃlite.
artificial intelligence
semi-arid
satellite image classification.
IRRIGACAO E DRENAGEM
dc.subject.eng.fl_str_mv artificial intelligence
semi-arid
satellite image classification.
dc.subject.cnpq.fl_str_mv IRRIGACAO E DRENAGEM
dc.description.sponsorship.fl_txt_mv Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
dc.description.abstract.por.fl_txt_mv In order to manage adequately natural resources inside a fragile environment, just like Caatinga, one should know its properties and spatial distribution. This work proposes an approach to classify LANDSAT-5 satellite images. These images, corresponding to a semiarid environment located in Iguatu country, Ceara, Brazil, were classified aiming at detecting the Caatinga biome by two type of classifiers based on machinery learning: Multi Layer Perceptron (MLP) and Support Vector Machine (SVM). The static classifier of Maximum Likelihood was also used as comparison to the other two methods. Agriculture, water, anthropical, herbaceous shrub Caatinga (CHA) and dense high Caatinga (CAD) are the five classes defined for classifying. MLP method tests were carried out changing neurons quantity in the intermediate layer. SVM method tests were carried out changing σ, from Gauss function, and penalization parameter (C). Performance of the tests was analyzed by Global Accuracy, Specific Accuracy and Kappa coefficient. The last one calculated by confusion matrix, which has been generated by comparison of classification data and ground control points GPS georreferenced (true points). MLP method presented best performance for tests in which 12 neurons have been attributed to the intermediate layer resulting in Global Accuracy and Kappa values of 82.14% and 0.76, respectively. On the other hand, SVM method presented best performance for tests carried out with C=1000 and σ=2, resulting in Global Accuracy and Kappa values of 86.03% and 0.77, respectively. The Maximum Likelihood classifier presented 81.2% of its pixels correctly classified (Global Accuracy) and K coefficient value of 0.73. The values of Specific Accuracy, which makes it possible to analyze the performance of each individual class, were above 70% in each class. A total 576 km2 area was classified. Between the two types of Caatinga biome considered, herbaceous shrub Caatinga (CHA) comes to be the most common. Therefore, taking into account experimental results, it is possible to conclude that both SVM and MLP methods, which are based on machine learning, show satisfactory performance for classifying Caatinga biome.
O manejo adequado dos recursos naturais em ambientes frÃgeis, como o da Caatinga, requer o conhecimento de suas propriedades e distribuiÃÃo espacial. Desta forma, o presente trabalho propÃe uma abordagem para a classificaÃÃo de imagens do satÃlite LANDSAT-5, correspondente a uma regiÃo semiÃrida localizada no municÃpio de Iguatu no Estado do CearÃ, objetivando detectar o bioma da Caatinga por meio de dois tipos de classificadores baseados em aprendizado de mÃquina: o mÃtodo baseado em Perceptrons de MÃltiplas Camadas-MLP (do inglÃs Multi Layer Perceptron) e o mÃtodo MÃquinas de Vetores de Suporte-SVM (do inglÃs Support Vector Machine). O classificador estatÃstico da mÃxima verossimilhanÃa, por ser amplamente utilizado na literatura, tambÃm foi aplicado à Ãrea em estudo para que o desempenho dos mÃtodos propostos fosse comparado aos destes. Cinco classes foram definidas para a classificaÃÃo, a saber: agricultura, antropizada, Ãgua, caatinga herbÃcea arbustiva (CHA) e caatinga arbÃrea densa (CAD). Para o mÃtodo MLP, foram realizados testes variando a quantidade de neurÃnios na camada intermediÃria. Jà os testes para o mÃtodo SVM consistiram em variar o parÃmetro σ da funÃÃo gaussiana e o parÃmetro de penalizaÃÃo (C). A eficiÃncia dos mÃtodos foi analisada por meio dos coeficientes de ExatidÃo Global, ExatidÃo EspecÃfica e de Kappa calculados por meio dos dados da matriz de confusÃo. Esta, por sua vez, foi gerada para cada mÃtodo a partir da comparaÃÃo entre a classificaÃÃo e os pontos georreferenciados com aparelho GPS (correspondentes à verdade terrestre). O mÃtodo MLP apresentou melhor desempenho para o teste em que 12 neurÃnios foram atribuÃdos à camada intermediÃria, com valores de ExatidÃo Global e de Kappa de 82,14% e 0,76, respectivamente. Jà o mÃtodo SVM apresentou melhor performance para o teste com C=1000 e σ=2 no qual se obteve valores de 86,03% e 0,77 para os coeficientes de ExatidÃo Global e Kappa, respectivamente. O valor de ExatidÃo Global para o classificador estatÃstico da mÃxima verossimilhanÃa permitiu concluir que 81,2% dos pixels foram classificados corretamente e o coeficiente de Kappa para este mÃtodo foi de 0,73. Os valores dos coeficientes de ExatidÃo EspecÃfica, que proporcionam analisar o desempenho dos mÃtodos em cada classe, foram superiores a 70%. A Ãrea total classificada foi de 576 km2 e, dentre as duas classes consideradas para o bioma Caatinga, a predominante à a do tipo caatinga herbÃcea arbustiva (CHA). Assim, por meio dos resultados experimentais obtidos, pode-se afirmar que os mÃtodos SVM e MLP, baseados em aprendizado de mÃquina, apresentaram desempenho satisfatÃrio para a classificaÃÃo do bioma Caatinga.
description In order to manage adequately natural resources inside a fragile environment, just like Caatinga, one should know its properties and spatial distribution. This work proposes an approach to classify LANDSAT-5 satellite images. These images, corresponding to a semiarid environment located in Iguatu country, Ceara, Brazil, were classified aiming at detecting the Caatinga biome by two type of classifiers based on machinery learning: Multi Layer Perceptron (MLP) and Support Vector Machine (SVM). The static classifier of Maximum Likelihood was also used as comparison to the other two methods. Agriculture, water, anthropical, herbaceous shrub Caatinga (CHA) and dense high Caatinga (CAD) are the five classes defined for classifying. MLP method tests were carried out changing neurons quantity in the intermediate layer. SVM method tests were carried out changing σ, from Gauss function, and penalization parameter (C). Performance of the tests was analyzed by Global Accuracy, Specific Accuracy and Kappa coefficient. The last one calculated by confusion matrix, which has been generated by comparison of classification data and ground control points GPS georreferenced (true points). MLP method presented best performance for tests in which 12 neurons have been attributed to the intermediate layer resulting in Global Accuracy and Kappa values of 82.14% and 0.76, respectively. On the other hand, SVM method presented best performance for tests carried out with C=1000 and σ=2, resulting in Global Accuracy and Kappa values of 86.03% and 0.77, respectively. The Maximum Likelihood classifier presented 81.2% of its pixels correctly classified (Global Accuracy) and K coefficient value of 0.73. The values of Specific Accuracy, which makes it possible to analyze the performance of each individual class, were above 70% in each class. A total 576 km2 area was classified. Between the two types of Caatinga biome considered, herbaceous shrub Caatinga (CHA) comes to be the most common. Therefore, taking into account experimental results, it is possible to conclude that both SVM and MLP methods, which are based on machine learning, show satisfactory performance for classifying Caatinga biome.
publishDate 2009
dc.date.issued.fl_str_mv 2009-03-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5201
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5201
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia AgrÃcola
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295143341588480