Tools for analysis of self-management and water use of sustainability in irrigation perimeters

Bibliographic Details
Main Author: Fabricio Mota GonÃalves
Publication Date: 2014
Format: Doctoral thesis
Language: por
Source: Biblioteca Digital de Teses e Dissertações da UFC
Download full: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16108
Summary: This work aims to characterize the current stage of Irrigated Perimeters Federal government with a view to self-management process and present alternative of allocating water distribution in secondary irrigation canals. The research was divided into two themes. The first addressed the development of a methodology for evaluating the performance of Irrigated Perimeters from the creation of a statistical model Multivariate discriminant and an Artificial Neural Network using the performance indicators of irrigated public areas of the National Department of Works Against Drought (Dnocs) and Development Company of the SÃo Francisco and ParnaÃba (Codevasf) as a way to evaluate the prospect of self-management of the same. The second dealt with the optimization of water use, a case study at the Experimental Farm Curu Valley, belonging to the Federal University of CearÃ, in the area adjacent to the irrigated Curu Pentecost were accomplished. Based on information provided by the National Department of Works Against Drought (Dnocs) and Development Company of the SÃo Francisco and ParnaÃba (Codevasf), the key performance indicators relating to Self-Management of Irrigated Perimeters were evaluated. The Multivariate and discriminant analysis (AMD) technique Artificial Neural Networks (ANN) were used to separate the standards relating to the performance of Irrigated Perimeters linear character or not. RNA yielded the automatic identification of the pattern that belongs to each perimeter over time. Based on the results obtained in the multivariate discriminant analysis, we observed the Generation Revenue per Hectare (HRM) as the most important indicator in discriminatory process between Irrigated Perimeters regarding self-management. The perimeters with the best performance in relation to self-management were: Nilo Coelho, CuraÃÃ I Pirapora and ManiÃoba. Regarding the operationalization of water use, we used a mathematical model of linear programming to determine the most rational way to release water for irrigated areas. The allocation defined by mathematical modeling proved adequate for the needs of established cultures, showing the most rational use of water.
id UFC_df8113e49ef5d6917f1e89fcbe33ca72
oai_identifier_str oai:www.teses.ufc.br:10476
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTools for analysis of self-management and water use of sustainability in irrigation perimetersFerramentas para anÃlise de autogestÃo e sustentabilidade do uso da Ãgua em perÃmetros irrigados2014-08-08Raimundo Nonato TÃvora Costa05344476353http://lattes.cnpq.br/0999786396884077Renato SÃlvio da Frota Ribeiro08846928334http://lattes.cnpq.br/5332284427390543Julien Daniel Pierre Burte62872915320http://lattes.cnpq.br/0102277065108058Marisete Dantas de Aquino12256366391SÃlvio Carlos Ribeiro Vieira Lima41659120349http://lattes.cnpq.br/521567793930902001088263330http://lattes.cnpq.br/3215795719722381Fabricio Mota GonÃalvesUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia AgrÃcolaUFCBRAnÃlise multivariada InteligÃncia artificial ProgramaÃÃo linear OperacionalizaÃÃoMultivariate analysis Artificial intelligence Linear programmin OperationsENGENHARIA AGRICOLAThis work aims to characterize the current stage of Irrigated Perimeters Federal government with a view to self-management process and present alternative of allocating water distribution in secondary irrigation canals. The research was divided into two themes. The first addressed the development of a methodology for evaluating the performance of Irrigated Perimeters from the creation of a statistical model Multivariate discriminant and an Artificial Neural Network using the performance indicators of irrigated public areas of the National Department of Works Against Drought (Dnocs) and Development Company of the SÃo Francisco and ParnaÃba (Codevasf) as a way to evaluate the prospect of self-management of the same. The second dealt with the optimization of water use, a case study at the Experimental Farm Curu Valley, belonging to the Federal University of CearÃ, in the area adjacent to the irrigated Curu Pentecost were accomplished. Based on information provided by the National Department of Works Against Drought (Dnocs) and Development Company of the SÃo Francisco and ParnaÃba (Codevasf), the key performance indicators relating to Self-Management of Irrigated Perimeters were evaluated. The Multivariate and discriminant analysis (AMD) technique Artificial Neural Networks (ANN) were used to separate the standards relating to the performance of Irrigated Perimeters linear character or not. RNA yielded the automatic identification of the pattern that belongs to each perimeter over time. Based on the results obtained in the multivariate discriminant analysis, we observed the Generation Revenue per Hectare (HRM) as the most important indicator in discriminatory process between Irrigated Perimeters regarding self-management. The perimeters with the best performance in relation to self-management were: Nilo Coelho, CuraÃà I Pirapora and ManiÃoba. Regarding the operationalization of water use, we used a mathematical model of linear programming to determine the most rational way to release water for irrigated areas. The allocation defined by mathematical modeling proved adequate for the needs of established cultures, showing the most rational use of water.Este trabalho tem como objetivo caracterizar o estÃgio atual dos PerÃmetros Irrigados PÃblicos Federais com vistas ao processo de autogestÃo e apresentar alternativa de alocar a distribuiÃÃo de Ãgua em canais secundÃrios de irrigaÃÃo. A pesquisa foi dividida em dois temas. O primeiro abordou o desenvolvimento de uma metodologia de avaliaÃÃo de desempenho de PerÃmetros Irrigados a partir da criaÃÃo de um modelo estatÃstico Discriminante Multivariado e de uma Rede Neural Artificial utilizando os indicadores de desempenho dos perÃmetros pÃblicos irrigados do Departamento Nacional de Obras Contra as Secas (Dnocs) e da Companhia de Desenvolvimento do Vale do SÃo Francisco e ParnaÃba (Codevasf), como forma de avaliar a perspectiva da autogestÃo dos mesmos. O segundo tratou da otimizaÃÃo do uso da Ãgua, tendo sido realizado um estudo de caso na Fazenda Experimental Vale do Curu, pertencente à Universidade Federal do CearÃ, em Ãrea contÃgua ao PerÃmetro Irrigado Curu Pentecoste. Com base nas informaÃÃes disponibilizadas pelo Departamento Nacional de Obras Contra as Secas (Dnocs) e a Companhia de Desenvolvimento do Vale do SÃo Francisco e ParnaÃba (Codevasf), foram avaliados os principais indicadores de desempenho relativos à AutogestÃo dos PerÃmetros Irrigados. A AnÃlise Multivariada Discriminante (AMD) e a tÃcnica de Redes Neurais Artificiais (RNA) foram utilizadas para separar os padrÃes referentes ao desempenho dos PerÃmetros Irrigados de carÃter linear ou nÃo. A RNA proporcionou a identificaÃÃo automÃtica do padrÃo a que pertence cada perÃmetro no decorrer do tempo. Com base nos resultados obtidos na AnÃlise Multivariada Discriminante, observou-se o indicador GeraÃÃo de Receita por Hectare (GRH) como mais importante no processo discriminatÃrio entre os PerÃmetros Irrigados quanto à AutogestÃo. Os PerÃmetros com os melhores desempenhos em relaÃÃo à AutogestÃo foram: Nilo Coelho, CuraÃà I, Pirapora e ManiÃoba. Com relaÃÃo à operacionalizaÃÃo do uso da Ãgua, utilizou-se um modelo matemÃtico de programaÃÃo linear para determinar a forma mais racional de liberar Ãgua para as Ãreas irrigadas. A alocaÃÃo definida pela modelagem matemÃtica mostrou-se adequada para as necessidades das culturas estabelecidas, mostrando a utilizaÃÃo mais racional da Ãgua.CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superiorhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16108application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:29:17Zmail@mail.com -
dc.title.en.fl_str_mv Tools for analysis of self-management and water use of sustainability in irrigation perimeters
dc.title.alternative.pt.fl_str_mv Ferramentas para anÃlise de autogestÃo e sustentabilidade do uso da Ãgua em perÃmetros irrigados
title Tools for analysis of self-management and water use of sustainability in irrigation perimeters
spellingShingle Tools for analysis of self-management and water use of sustainability in irrigation perimeters
Fabricio Mota GonÃalves
AnÃlise multivariada
InteligÃncia artificial
ProgramaÃÃo linear
OperacionalizaÃÃo
Multivariate analysis
Artificial intelligence
Linear programmin
Operations
ENGENHARIA AGRICOLA
title_short Tools for analysis of self-management and water use of sustainability in irrigation perimeters
title_full Tools for analysis of self-management and water use of sustainability in irrigation perimeters
title_fullStr Tools for analysis of self-management and water use of sustainability in irrigation perimeters
title_full_unstemmed Tools for analysis of self-management and water use of sustainability in irrigation perimeters
title_sort Tools for analysis of self-management and water use of sustainability in irrigation perimeters
author Fabricio Mota GonÃalves
author_facet Fabricio Mota GonÃalves
author_role author
dc.contributor.advisor1.fl_str_mv Raimundo Nonato TÃvora Costa
dc.contributor.advisor1ID.fl_str_mv 05344476353
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0999786396884077
dc.contributor.advisor-co1.fl_str_mv Renato SÃlvio da Frota Ribeiro
dc.contributor.advisor-co1ID.fl_str_mv 08846928334
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/5332284427390543
dc.contributor.referee1.fl_str_mv Julien Daniel Pierre Burte
dc.contributor.referee1ID.fl_str_mv 62872915320
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/0102277065108058
dc.contributor.referee2.fl_str_mv Marisete Dantas de Aquino
dc.contributor.referee2ID.fl_str_mv 12256366391
dc.contributor.referee3.fl_str_mv SÃlvio Carlos Ribeiro Vieira Lima
dc.contributor.referee3ID.fl_str_mv 41659120349
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/5215677939309020
dc.contributor.authorID.fl_str_mv 01088263330
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3215795719722381
dc.contributor.author.fl_str_mv Fabricio Mota GonÃalves
contributor_str_mv Raimundo Nonato TÃvora Costa
Renato SÃlvio da Frota Ribeiro
Julien Daniel Pierre Burte
Marisete Dantas de Aquino
SÃlvio Carlos Ribeiro Vieira Lima
dc.subject.por.fl_str_mv AnÃlise multivariada
InteligÃncia artificial
ProgramaÃÃo linear
OperacionalizaÃÃo
topic AnÃlise multivariada
InteligÃncia artificial
ProgramaÃÃo linear
OperacionalizaÃÃo
Multivariate analysis
Artificial intelligence
Linear programmin
Operations
ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv Multivariate analysis
Artificial intelligence
Linear programmin
Operations
dc.subject.cnpq.fl_str_mv ENGENHARIA AGRICOLA
dc.description.sponsorship.fl_txt_mv CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
dc.description.abstract.por.fl_txt_mv This work aims to characterize the current stage of Irrigated Perimeters Federal government with a view to self-management process and present alternative of allocating water distribution in secondary irrigation canals. The research was divided into two themes. The first addressed the development of a methodology for evaluating the performance of Irrigated Perimeters from the creation of a statistical model Multivariate discriminant and an Artificial Neural Network using the performance indicators of irrigated public areas of the National Department of Works Against Drought (Dnocs) and Development Company of the SÃo Francisco and ParnaÃba (Codevasf) as a way to evaluate the prospect of self-management of the same. The second dealt with the optimization of water use, a case study at the Experimental Farm Curu Valley, belonging to the Federal University of CearÃ, in the area adjacent to the irrigated Curu Pentecost were accomplished. Based on information provided by the National Department of Works Against Drought (Dnocs) and Development Company of the SÃo Francisco and ParnaÃba (Codevasf), the key performance indicators relating to Self-Management of Irrigated Perimeters were evaluated. The Multivariate and discriminant analysis (AMD) technique Artificial Neural Networks (ANN) were used to separate the standards relating to the performance of Irrigated Perimeters linear character or not. RNA yielded the automatic identification of the pattern that belongs to each perimeter over time. Based on the results obtained in the multivariate discriminant analysis, we observed the Generation Revenue per Hectare (HRM) as the most important indicator in discriminatory process between Irrigated Perimeters regarding self-management. The perimeters with the best performance in relation to self-management were: Nilo Coelho, CuraÃÃ I Pirapora and ManiÃoba. Regarding the operationalization of water use, we used a mathematical model of linear programming to determine the most rational way to release water for irrigated areas. The allocation defined by mathematical modeling proved adequate for the needs of established cultures, showing the most rational use of water.
Este trabalho tem como objetivo caracterizar o estÃgio atual dos PerÃmetros Irrigados PÃblicos Federais com vistas ao processo de autogestÃo e apresentar alternativa de alocar a distribuiÃÃo de Ãgua em canais secundÃrios de irrigaÃÃo. A pesquisa foi dividida em dois temas. O primeiro abordou o desenvolvimento de uma metodologia de avaliaÃÃo de desempenho de PerÃmetros Irrigados a partir da criaÃÃo de um modelo estatÃstico Discriminante Multivariado e de uma Rede Neural Artificial utilizando os indicadores de desempenho dos perÃmetros pÃblicos irrigados do Departamento Nacional de Obras Contra as Secas (Dnocs) e da Companhia de Desenvolvimento do Vale do SÃo Francisco e ParnaÃba (Codevasf), como forma de avaliar a perspectiva da autogestÃo dos mesmos. O segundo tratou da otimizaÃÃo do uso da Ãgua, tendo sido realizado um estudo de caso na Fazenda Experimental Vale do Curu, pertencente à Universidade Federal do CearÃ, em Ãrea contÃgua ao PerÃmetro Irrigado Curu Pentecoste. Com base nas informaÃÃes disponibilizadas pelo Departamento Nacional de Obras Contra as Secas (Dnocs) e a Companhia de Desenvolvimento do Vale do SÃo Francisco e ParnaÃba (Codevasf), foram avaliados os principais indicadores de desempenho relativos à AutogestÃo dos PerÃmetros Irrigados. A AnÃlise Multivariada Discriminante (AMD) e a tÃcnica de Redes Neurais Artificiais (RNA) foram utilizadas para separar os padrÃes referentes ao desempenho dos PerÃmetros Irrigados de carÃter linear ou nÃo. A RNA proporcionou a identificaÃÃo automÃtica do padrÃo a que pertence cada perÃmetro no decorrer do tempo. Com base nos resultados obtidos na AnÃlise Multivariada Discriminante, observou-se o indicador GeraÃÃo de Receita por Hectare (GRH) como mais importante no processo discriminatÃrio entre os PerÃmetros Irrigados quanto à AutogestÃo. Os PerÃmetros com os melhores desempenhos em relaÃÃo à AutogestÃo foram: Nilo Coelho, CuraÃà I, Pirapora e ManiÃoba. Com relaÃÃo à operacionalizaÃÃo do uso da Ãgua, utilizou-se um modelo matemÃtico de programaÃÃo linear para determinar a forma mais racional de liberar Ãgua para as Ãreas irrigadas. A alocaÃÃo definida pela modelagem matemÃtica mostrou-se adequada para as necessidades das culturas estabelecidas, mostrando a utilizaÃÃo mais racional da Ãgua.
description This work aims to characterize the current stage of Irrigated Perimeters Federal government with a view to self-management process and present alternative of allocating water distribution in secondary irrigation canals. The research was divided into two themes. The first addressed the development of a methodology for evaluating the performance of Irrigated Perimeters from the creation of a statistical model Multivariate discriminant and an Artificial Neural Network using the performance indicators of irrigated public areas of the National Department of Works Against Drought (Dnocs) and Development Company of the SÃo Francisco and ParnaÃba (Codevasf) as a way to evaluate the prospect of self-management of the same. The second dealt with the optimization of water use, a case study at the Experimental Farm Curu Valley, belonging to the Federal University of CearÃ, in the area adjacent to the irrigated Curu Pentecost were accomplished. Based on information provided by the National Department of Works Against Drought (Dnocs) and Development Company of the SÃo Francisco and ParnaÃba (Codevasf), the key performance indicators relating to Self-Management of Irrigated Perimeters were evaluated. The Multivariate and discriminant analysis (AMD) technique Artificial Neural Networks (ANN) were used to separate the standards relating to the performance of Irrigated Perimeters linear character or not. RNA yielded the automatic identification of the pattern that belongs to each perimeter over time. Based on the results obtained in the multivariate discriminant analysis, we observed the Generation Revenue per Hectare (HRM) as the most important indicator in discriminatory process between Irrigated Perimeters regarding self-management. The perimeters with the best performance in relation to self-management were: Nilo Coelho, CuraÃÃ I Pirapora and ManiÃoba. Regarding the operationalization of water use, we used a mathematical model of linear programming to determine the most rational way to release water for irrigated areas. The allocation defined by mathematical modeling proved adequate for the needs of established cultures, showing the most rational use of water.
publishDate 2014
dc.date.issued.fl_str_mv 2014-08-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16108
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16108
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia AgrÃcola
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295216316186624