The role of excitatory and inhibitory learning in EXIN networks

Detalhes bibliográficos
Autor(a) principal: Barreto, Guilherme de Alencar
Data de Publicação: 1998
Outros Autores: Araújo, Aluízio Fausto Ribeiro
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/70706
Resumo: In this paper we propose modifications for the learning rules of Marshall’s EXIN (excitatory + inhibitory) neural network model in order to decrease its computational complexity and understand the role of the weight updating learning rules in correctly encoding familiar, superimposed and ambiguous input patterns. The MEXIN (Modified EXIN) models introduce mixtures of competitive and Hebbian updating rules. In this case, only the weights of the unit with highest activation are updated. Hence, the MEXIN networks require less computation than the original EXIN model. A number of simulations are carried out with the aim of showing how the models respond to overlapping, superimposed and ambiguous patterns.
id UFC-7_3d4cb3e33d50f5cb441c212f8b57cccf
oai_identifier_str oai:repositorio.ufc.br:riufc/70706
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Barreto, Guilherme de AlencarAraújo, Aluízio Fausto Ribeiro2023-02-09T16:49:20Z2023-02-09T16:49:20Z1998BARRETO, G. A.; ARAÚJO, A. F. R. The role of excitatory and inhibitory learning in EXIN networks. In: WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, Anchorage. Anais... Anchorage: IEEE, 1998. p. 2378-2383.http://www.repositorio.ufc.br/handle/riufc/70706In this paper we propose modifications for the learning rules of Marshall’s EXIN (excitatory + inhibitory) neural network model in order to decrease its computational complexity and understand the role of the weight updating learning rules in correctly encoding familiar, superimposed and ambiguous input patterns. The MEXIN (Modified EXIN) models introduce mixtures of competitive and Hebbian updating rules. In this case, only the weights of the unit with highest activation are updated. Hence, the MEXIN networks require less computation than the original EXIN model. A number of simulations are carried out with the aim of showing how the models respond to overlapping, superimposed and ambiguous patterns.World Congress on Computational IntelligenceEXIN networksAnti-hebbian learningCompetitive learningUncertaintyDistributed codingThe role of excitatory and inhibitory learning in EXIN networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/70706/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL1998_eve_gabarreto.pdf1998_eve_gabarreto.pdfapplication/pdf126915http://repositorio.ufc.br/bitstream/riufc/70706/1/1998_eve_gabarreto.pdfc401283e8cd0dd649ef3fa90102b217dMD51riufc/707062023-02-09 13:49:20.283oai:repositorio.ufc.br:riufc/70706Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-02-09T16:49:20Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv The role of excitatory and inhibitory learning in EXIN networks
title The role of excitatory and inhibitory learning in EXIN networks
spellingShingle The role of excitatory and inhibitory learning in EXIN networks
Barreto, Guilherme de Alencar
EXIN networks
Anti-hebbian learning
Competitive learning
Uncertainty
Distributed coding
title_short The role of excitatory and inhibitory learning in EXIN networks
title_full The role of excitatory and inhibitory learning in EXIN networks
title_fullStr The role of excitatory and inhibitory learning in EXIN networks
title_full_unstemmed The role of excitatory and inhibitory learning in EXIN networks
title_sort The role of excitatory and inhibitory learning in EXIN networks
author Barreto, Guilherme de Alencar
author_facet Barreto, Guilherme de Alencar
Araújo, Aluízio Fausto Ribeiro
author_role author
author2 Araújo, Aluízio Fausto Ribeiro
author2_role author
dc.contributor.author.fl_str_mv Barreto, Guilherme de Alencar
Araújo, Aluízio Fausto Ribeiro
dc.subject.por.fl_str_mv EXIN networks
Anti-hebbian learning
Competitive learning
Uncertainty
Distributed coding
topic EXIN networks
Anti-hebbian learning
Competitive learning
Uncertainty
Distributed coding
description In this paper we propose modifications for the learning rules of Marshall’s EXIN (excitatory + inhibitory) neural network model in order to decrease its computational complexity and understand the role of the weight updating learning rules in correctly encoding familiar, superimposed and ambiguous input patterns. The MEXIN (Modified EXIN) models introduce mixtures of competitive and Hebbian updating rules. In this case, only the weights of the unit with highest activation are updated. Hence, the MEXIN networks require less computation than the original EXIN model. A number of simulations are carried out with the aim of showing how the models respond to overlapping, superimposed and ambiguous patterns.
publishDate 1998
dc.date.issued.fl_str_mv 1998
dc.date.accessioned.fl_str_mv 2023-02-09T16:49:20Z
dc.date.available.fl_str_mv 2023-02-09T16:49:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.citation.fl_str_mv BARRETO, G. A.; ARAÚJO, A. F. R. The role of excitatory and inhibitory learning in EXIN networks. In: WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, Anchorage. Anais... Anchorage: IEEE, 1998. p. 2378-2383.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/70706
identifier_str_mv BARRETO, G. A.; ARAÚJO, A. F. R. The role of excitatory and inhibitory learning in EXIN networks. In: WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, Anchorage. Anais... Anchorage: IEEE, 1998. p. 2378-2383.
url http://www.repositorio.ufc.br/handle/riufc/70706
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv World Congress on Computational Intelligence
publisher.none.fl_str_mv World Congress on Computational Intelligence
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/70706/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/70706/1/1998_eve_gabarreto.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
c401283e8cd0dd649ef3fa90102b217d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792725841149952