Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system
Main Author: | |
---|---|
Publication Date: | 2017 |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/001300000np4n |
Download full: | https://repositorio.udesc.br/handle/UDESC/6725 |
Summary: | © 2017, EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature.This paper reports on numerically computed parameter plane plots for a dynamical system modeled by a set of five-parameter, four autonomous first-order nonlinear ordinary differential equations. The dynamical behavior of each point, in each parameter plane, is characterized by Lyapunov exponents spectra. Each of these diagrams indicates parameter values for which hyperchaos, chaos, quasiperiodicity, and periodicity may be found. In fact, each diagram shows delimited regions where each of these behaviors happens. Moreover, it is shown that some of these parameter planes display organized periodic structures embedded in quasiperiodic and chaotic regions. |
id |
UDESC-2_cbd4eb9ed980030bc0aacbff2289e886 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/6725 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system© 2017, EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature.This paper reports on numerically computed parameter plane plots for a dynamical system modeled by a set of five-parameter, four autonomous first-order nonlinear ordinary differential equations. The dynamical behavior of each point, in each parameter plane, is characterized by Lyapunov exponents spectra. Each of these diagrams indicates parameter values for which hyperchaos, chaos, quasiperiodicity, and periodicity may be found. In fact, each diagram shows delimited regions where each of these behaviors happens. Moreover, it is shown that some of these parameter planes display organized periodic structures embedded in quasiperiodic and chaotic regions.2024-12-06T13:09:52Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1434-603610.1140/epjb/e2017-80533-5https://repositorio.udesc.br/handle/UDESC/6725ark:/33523/001300000np4nEuropean Physical Journal B9012Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:51:51Zoai:repositorio.udesc.br:UDESC/6725Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:51:51Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system |
title |
Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system |
spellingShingle |
Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system Rech P.C.* |
title_short |
Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system |
title_full |
Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system |
title_fullStr |
Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system |
title_full_unstemmed |
Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system |
title_sort |
Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system |
author |
Rech P.C.* |
author_facet |
Rech P.C.* |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rech P.C.* |
description |
© 2017, EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature.This paper reports on numerically computed parameter plane plots for a dynamical system modeled by a set of five-parameter, four autonomous first-order nonlinear ordinary differential equations. The dynamical behavior of each point, in each parameter plane, is characterized by Lyapunov exponents spectra. Each of these diagrams indicates parameter values for which hyperchaos, chaos, quasiperiodicity, and periodicity may be found. In fact, each diagram shows delimited regions where each of these behaviors happens. Moreover, it is shown that some of these parameter planes display organized periodic structures embedded in quasiperiodic and chaotic regions. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2024-12-06T13:09:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1434-6036 10.1140/epjb/e2017-80533-5 https://repositorio.udesc.br/handle/UDESC/6725 |
dc.identifier.dark.fl_str_mv |
ark:/33523/001300000np4n |
identifier_str_mv |
1434-6036 10.1140/epjb/e2017-80533-5 ark:/33523/001300000np4n |
url |
https://repositorio.udesc.br/handle/UDESC/6725 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
European Physical Journal B 90 12 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258152076083200 |