Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system

Detalhes bibliográficos
Autor(a) principal: Rech P.C.*
Data de Publicação: 2017
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da Udesc
dARK ID: ark:/33523/001300000np4n
Texto Completo: https://repositorio.udesc.br/handle/UDESC/6725
Resumo: © 2017, EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature.This paper reports on numerically computed parameter plane plots for a dynamical system modeled by a set of five-parameter, four autonomous first-order nonlinear ordinary differential equations. The dynamical behavior of each point, in each parameter plane, is characterized by Lyapunov exponents spectra. Each of these diagrams indicates parameter values for which hyperchaos, chaos, quasiperiodicity, and periodicity may be found. In fact, each diagram shows delimited regions where each of these behaviors happens. Moreover, it is shown that some of these parameter planes display organized periodic structures embedded in quasiperiodic and chaotic regions.
id UDESC-2_cbd4eb9ed980030bc0aacbff2289e886
oai_identifier_str oai:repositorio.udesc.br:UDESC/6725
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system© 2017, EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature.This paper reports on numerically computed parameter plane plots for a dynamical system modeled by a set of five-parameter, four autonomous first-order nonlinear ordinary differential equations. The dynamical behavior of each point, in each parameter plane, is characterized by Lyapunov exponents spectra. Each of these diagrams indicates parameter values for which hyperchaos, chaos, quasiperiodicity, and periodicity may be found. In fact, each diagram shows delimited regions where each of these behaviors happens. Moreover, it is shown that some of these parameter planes display organized periodic structures embedded in quasiperiodic and chaotic regions.2024-12-06T13:09:52Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1434-603610.1140/epjb/e2017-80533-5https://repositorio.udesc.br/handle/UDESC/6725ark:/33523/001300000np4nEuropean Physical Journal B9012Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:51:51Zoai:repositorio.udesc.br:UDESC/6725Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:51:51Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system
title Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system
spellingShingle Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system
Rech P.C.*
title_short Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system
title_full Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system
title_fullStr Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system
title_full_unstemmed Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system
title_sort Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system
author Rech P.C.*
author_facet Rech P.C.*
author_role author
dc.contributor.author.fl_str_mv Rech P.C.*
description © 2017, EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature.This paper reports on numerically computed parameter plane plots for a dynamical system modeled by a set of five-parameter, four autonomous first-order nonlinear ordinary differential equations. The dynamical behavior of each point, in each parameter plane, is characterized by Lyapunov exponents spectra. Each of these diagrams indicates parameter values for which hyperchaos, chaos, quasiperiodicity, and periodicity may be found. In fact, each diagram shows delimited regions where each of these behaviors happens. Moreover, it is shown that some of these parameter planes display organized periodic structures embedded in quasiperiodic and chaotic regions.
publishDate 2017
dc.date.none.fl_str_mv 2017
2024-12-06T13:09:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1434-6036
10.1140/epjb/e2017-80533-5
https://repositorio.udesc.br/handle/UDESC/6725
dc.identifier.dark.fl_str_mv ark:/33523/001300000np4n
identifier_str_mv 1434-6036
10.1140/epjb/e2017-80533-5
ark:/33523/001300000np4n
url https://repositorio.udesc.br/handle/UDESC/6725
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv European Physical Journal B
90
12
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258152076083200