Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors
Main Author: | |
---|---|
Publication Date: | 2011 |
Other Authors: | , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/001300000tq14 |
Download full: | https://repositorio.udesc.br/handle/UDESC/9517 |
Summary: | Implementation and comparison of peak detection algorithms for fiber Bragg gratings spectra have been implemented and made publicly available. Benchmark experiments were performed by measuring accuracy, precision and efficiency of currently used algorithms, namely the centroid, least squares gaussian and polynomial fitting, and computational intelligence techniques using particle swarm optimization and perceptron neural network. Considering noisy apodized and uniform FBG spectra in the detection, it is shown that there is no general optimal algorithm for fast peak determination with high accuracy and precision, but it would be easier to choose quasi-optimal algorithms with the more general guidelines presented. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE). |
id |
UDESC-2_919eef8de95ada74983c6785ecde1731 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/9517 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensorsImplementation and comparison of peak detection algorithms for fiber Bragg gratings spectra have been implemented and made publicly available. Benchmark experiments were performed by measuring accuracy, precision and efficiency of currently used algorithms, namely the centroid, least squares gaussian and polynomial fitting, and computational intelligence techniques using particle swarm optimization and perceptron neural network. Considering noisy apodized and uniform FBG spectra in the detection, it is shown that there is no general optimal algorithm for fast peak determination with high accuracy and precision, but it would be easier to choose quasi-optimal algorithms with the more general guidelines presented. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).2024-12-06T19:12:54Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject0277-786X10.1117/12.885964https://repositorio.udesc.br/handle/UDESC/9517ark:/33523/001300000tq14Proceedings of SPIE - The International Society for Optical Engineering7753Negri L.H.*Kalinowski H.J.Paterno, Aleksander Sadeengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:03:17Zoai:repositorio.udesc.br:UDESC/9517Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:03:17Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors |
title |
Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors |
spellingShingle |
Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors Negri L.H.* |
title_short |
Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors |
title_full |
Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors |
title_fullStr |
Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors |
title_full_unstemmed |
Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors |
title_sort |
Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors |
author |
Negri L.H.* |
author_facet |
Negri L.H.* Kalinowski H.J. Paterno, Aleksander Sade |
author_role |
author |
author2 |
Kalinowski H.J. Paterno, Aleksander Sade |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Negri L.H.* Kalinowski H.J. Paterno, Aleksander Sade |
description |
Implementation and comparison of peak detection algorithms for fiber Bragg gratings spectra have been implemented and made publicly available. Benchmark experiments were performed by measuring accuracy, precision and efficiency of currently used algorithms, namely the centroid, least squares gaussian and polynomial fitting, and computational intelligence techniques using particle swarm optimization and perceptron neural network. Considering noisy apodized and uniform FBG spectra in the detection, it is shown that there is no general optimal algorithm for fast peak determination with high accuracy and precision, but it would be easier to choose quasi-optimal algorithms with the more general guidelines presented. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE). |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2024-12-06T19:12:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
0277-786X 10.1117/12.885964 https://repositorio.udesc.br/handle/UDESC/9517 |
dc.identifier.dark.fl_str_mv |
ark:/33523/001300000tq14 |
identifier_str_mv |
0277-786X 10.1117/12.885964 ark:/33523/001300000tq14 |
url |
https://repositorio.udesc.br/handle/UDESC/9517 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering 7753 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258175402704896 |