Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors

Bibliographic Details
Main Author: Negri L.H.*
Publication Date: 2011
Other Authors: Kalinowski H.J., Paterno, Aleksander Sade
Format: Conference object
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/001300000tq14
Download full: https://repositorio.udesc.br/handle/UDESC/9517
Summary: Implementation and comparison of peak detection algorithms for fiber Bragg gratings spectra have been implemented and made publicly available. Benchmark experiments were performed by measuring accuracy, precision and efficiency of currently used algorithms, namely the centroid, least squares gaussian and polynomial fitting, and computational intelligence techniques using particle swarm optimization and perceptron neural network. Considering noisy apodized and uniform FBG spectra in the detection, it is shown that there is no general optimal algorithm for fast peak determination with high accuracy and precision, but it would be easier to choose quasi-optimal algorithms with the more general guidelines presented. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
id UDESC-2_919eef8de95ada74983c6785ecde1731
oai_identifier_str oai:repositorio.udesc.br:UDESC/9517
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensorsImplementation and comparison of peak detection algorithms for fiber Bragg gratings spectra have been implemented and made publicly available. Benchmark experiments were performed by measuring accuracy, precision and efficiency of currently used algorithms, namely the centroid, least squares gaussian and polynomial fitting, and computational intelligence techniques using particle swarm optimization and perceptron neural network. Considering noisy apodized and uniform FBG spectra in the detection, it is shown that there is no general optimal algorithm for fast peak determination with high accuracy and precision, but it would be easier to choose quasi-optimal algorithms with the more general guidelines presented. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).2024-12-06T19:12:54Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject0277-786X10.1117/12.885964https://repositorio.udesc.br/handle/UDESC/9517ark:/33523/001300000tq14Proceedings of SPIE - The International Society for Optical Engineering7753Negri L.H.*Kalinowski H.J.Paterno, Aleksander Sadeengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:03:17Zoai:repositorio.udesc.br:UDESC/9517Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:03:17Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors
title Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors
spellingShingle Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors
Negri L.H.*
title_short Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors
title_full Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors
title_fullStr Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors
title_full_unstemmed Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors
title_sort Benchmark for standard and computationally intelligent peak detection algorithms for fiber Bragg grating sensors
author Negri L.H.*
author_facet Negri L.H.*
Kalinowski H.J.
Paterno, Aleksander Sade
author_role author
author2 Kalinowski H.J.
Paterno, Aleksander Sade
author2_role author
author
dc.contributor.author.fl_str_mv Negri L.H.*
Kalinowski H.J.
Paterno, Aleksander Sade
description Implementation and comparison of peak detection algorithms for fiber Bragg gratings spectra have been implemented and made publicly available. Benchmark experiments were performed by measuring accuracy, precision and efficiency of currently used algorithms, namely the centroid, least squares gaussian and polynomial fitting, and computational intelligence techniques using particle swarm optimization and perceptron neural network. Considering noisy apodized and uniform FBG spectra in the detection, it is shown that there is no general optimal algorithm for fast peak determination with high accuracy and precision, but it would be easier to choose quasi-optimal algorithms with the more general guidelines presented. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
publishDate 2011
dc.date.none.fl_str_mv 2011
2024-12-06T19:12:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 0277-786X
10.1117/12.885964
https://repositorio.udesc.br/handle/UDESC/9517
dc.identifier.dark.fl_str_mv ark:/33523/001300000tq14
identifier_str_mv 0277-786X
10.1117/12.885964
ark:/33523/001300000tq14
url https://repositorio.udesc.br/handle/UDESC/9517
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings of SPIE - The International Society for Optical Engineering
7753
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258175402704896