Algebraic orbits on period-3 window for the logistic map
Main Author: | |
---|---|
Publication Date: | 2015 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/001300000ksjr |
Download full: | https://repositorio.udesc.br/handle/UDESC/8277 |
Summary: | © 2014, Springer Science+Business Media Dordrecht.Algebraic stable and unstable orbits are presented for the famous period-3 window of the logistic map (Formula presented.). It is exhibited the general polynomial that gives rise to both stable and unstable period-3 orbits. These orbits are shown for three different fixed control parameter values of r: at tangent bifurcation (birth), at super-stability and at ending pitchfork bifurcation (death) of the period-3 window. All orbits are exposed in two different ways: a sum of complex numbers (Formula presented.), as proposed by Gordon (Math Mag 69:118–120, 1996), and via Euler’s formula (Formula presented.). The algebraic expressions of (Formula presented.) and θ are given for each r value for both stable and unstable orbits, as well as their numerical values and the Lyapunov exponent. It is shown that a and (Formula presented.) are statistical quantities of the orbits. |
id |
UDESC-2_67efb0311d2b0bede2f038187b93df9f |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/8277 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Algebraic orbits on period-3 window for the logistic map© 2014, Springer Science+Business Media Dordrecht.Algebraic stable and unstable orbits are presented for the famous period-3 window of the logistic map (Formula presented.). It is exhibited the general polynomial that gives rise to both stable and unstable period-3 orbits. These orbits are shown for three different fixed control parameter values of r: at tangent bifurcation (birth), at super-stability and at ending pitchfork bifurcation (death) of the period-3 window. All orbits are exposed in two different ways: a sum of complex numbers (Formula presented.), as proposed by Gordon (Math Mag 69:118–120, 1996), and via Euler’s formula (Formula presented.). The algebraic expressions of (Formula presented.) and θ are given for each r value for both stable and unstable orbits, as well as their numerical values and the Lyapunov exponent. It is shown that a and (Formula presented.) are statistical quantities of the orbits.2024-12-06T14:02:47Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 1015 - 10211573-269X10.1007/s11071-014-1719-0https://repositorio.udesc.br/handle/UDESC/8277ark:/33523/001300000ksjrNonlinear Dynamics792Fidelis A.J.*Martins L.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:56:58Zoai:repositorio.udesc.br:UDESC/8277Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:56:58Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Algebraic orbits on period-3 window for the logistic map |
title |
Algebraic orbits on period-3 window for the logistic map |
spellingShingle |
Algebraic orbits on period-3 window for the logistic map Fidelis A.J.* |
title_short |
Algebraic orbits on period-3 window for the logistic map |
title_full |
Algebraic orbits on period-3 window for the logistic map |
title_fullStr |
Algebraic orbits on period-3 window for the logistic map |
title_full_unstemmed |
Algebraic orbits on period-3 window for the logistic map |
title_sort |
Algebraic orbits on period-3 window for the logistic map |
author |
Fidelis A.J.* |
author_facet |
Fidelis A.J.* Martins L.C.* |
author_role |
author |
author2 |
Martins L.C.* |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Fidelis A.J.* Martins L.C.* |
description |
© 2014, Springer Science+Business Media Dordrecht.Algebraic stable and unstable orbits are presented for the famous period-3 window of the logistic map (Formula presented.). It is exhibited the general polynomial that gives rise to both stable and unstable period-3 orbits. These orbits are shown for three different fixed control parameter values of r: at tangent bifurcation (birth), at super-stability and at ending pitchfork bifurcation (death) of the period-3 window. All orbits are exposed in two different ways: a sum of complex numbers (Formula presented.), as proposed by Gordon (Math Mag 69:118–120, 1996), and via Euler’s formula (Formula presented.). The algebraic expressions of (Formula presented.) and θ are given for each r value for both stable and unstable orbits, as well as their numerical values and the Lyapunov exponent. It is shown that a and (Formula presented.) are statistical quantities of the orbits. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2024-12-06T14:02:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1573-269X 10.1007/s11071-014-1719-0 https://repositorio.udesc.br/handle/UDESC/8277 |
dc.identifier.dark.fl_str_mv |
ark:/33523/001300000ksjr |
identifier_str_mv |
1573-269X 10.1007/s11071-014-1719-0 ark:/33523/001300000ksjr |
url |
https://repositorio.udesc.br/handle/UDESC/8277 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Nonlinear Dynamics 79 2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 1015 - 1021 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258143425331200 |