Algebraic orbits on period-3 window for the logistic map

Bibliographic Details
Main Author: Fidelis A.J.*
Publication Date: 2015
Other Authors: Martins L.C.*
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/001300000ksjr
Download full: https://repositorio.udesc.br/handle/UDESC/8277
Summary: © 2014, Springer Science+Business Media Dordrecht.Algebraic stable and unstable orbits are presented for the famous period-3 window of the logistic map (Formula presented.). It is exhibited the general polynomial that gives rise to both stable and unstable period-3 orbits. These orbits are shown for three different fixed control parameter values of r: at tangent bifurcation (birth), at super-stability and at ending pitchfork bifurcation (death) of the period-3 window. All orbits are exposed in two different ways: a sum of complex numbers (Formula presented.), as proposed by Gordon (Math Mag 69:118–120, 1996), and via Euler’s formula (Formula presented.). The algebraic expressions of (Formula presented.) and θ are given for each r value for both stable and unstable orbits, as well as their numerical values and the Lyapunov exponent. It is shown that a and (Formula presented.) are statistical quantities of the orbits.
id UDESC-2_67efb0311d2b0bede2f038187b93df9f
oai_identifier_str oai:repositorio.udesc.br:UDESC/8277
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Algebraic orbits on period-3 window for the logistic map© 2014, Springer Science+Business Media Dordrecht.Algebraic stable and unstable orbits are presented for the famous period-3 window of the logistic map (Formula presented.). It is exhibited the general polynomial that gives rise to both stable and unstable period-3 orbits. These orbits are shown for three different fixed control parameter values of r: at tangent bifurcation (birth), at super-stability and at ending pitchfork bifurcation (death) of the period-3 window. All orbits are exposed in two different ways: a sum of complex numbers (Formula presented.), as proposed by Gordon (Math Mag 69:118–120, 1996), and via Euler’s formula (Formula presented.). The algebraic expressions of (Formula presented.) and θ are given for each r value for both stable and unstable orbits, as well as their numerical values and the Lyapunov exponent. It is shown that a and (Formula presented.) are statistical quantities of the orbits.2024-12-06T14:02:47Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 1015 - 10211573-269X10.1007/s11071-014-1719-0https://repositorio.udesc.br/handle/UDESC/8277ark:/33523/001300000ksjrNonlinear Dynamics792Fidelis A.J.*Martins L.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:56:58Zoai:repositorio.udesc.br:UDESC/8277Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:56:58Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Algebraic orbits on period-3 window for the logistic map
title Algebraic orbits on period-3 window for the logistic map
spellingShingle Algebraic orbits on period-3 window for the logistic map
Fidelis A.J.*
title_short Algebraic orbits on period-3 window for the logistic map
title_full Algebraic orbits on period-3 window for the logistic map
title_fullStr Algebraic orbits on period-3 window for the logistic map
title_full_unstemmed Algebraic orbits on period-3 window for the logistic map
title_sort Algebraic orbits on period-3 window for the logistic map
author Fidelis A.J.*
author_facet Fidelis A.J.*
Martins L.C.*
author_role author
author2 Martins L.C.*
author2_role author
dc.contributor.author.fl_str_mv Fidelis A.J.*
Martins L.C.*
description © 2014, Springer Science+Business Media Dordrecht.Algebraic stable and unstable orbits are presented for the famous period-3 window of the logistic map (Formula presented.). It is exhibited the general polynomial that gives rise to both stable and unstable period-3 orbits. These orbits are shown for three different fixed control parameter values of r: at tangent bifurcation (birth), at super-stability and at ending pitchfork bifurcation (death) of the period-3 window. All orbits are exposed in two different ways: a sum of complex numbers (Formula presented.), as proposed by Gordon (Math Mag 69:118–120, 1996), and via Euler’s formula (Formula presented.). The algebraic expressions of (Formula presented.) and θ are given for each r value for both stable and unstable orbits, as well as their numerical values and the Lyapunov exponent. It is shown that a and (Formula presented.) are statistical quantities of the orbits.
publishDate 2015
dc.date.none.fl_str_mv 2015
2024-12-06T14:02:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1573-269X
10.1007/s11071-014-1719-0
https://repositorio.udesc.br/handle/UDESC/8277
dc.identifier.dark.fl_str_mv ark:/33523/001300000ksjr
identifier_str_mv 1573-269X
10.1007/s11071-014-1719-0
ark:/33523/001300000ksjr
url https://repositorio.udesc.br/handle/UDESC/8277
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nonlinear Dynamics
79
2
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 1015 - 1021
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258143425331200