Dynamics of a Four-Dimensional System with Cubic Nonlinearities
Main Author: | |
---|---|
Publication Date: | 2021 |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/001300000n6dd |
Download full: | https://repositorio.udesc.br/handle/UDESC/4245 |
Summary: | © 2021 World Scientific Publishing Company.In this paper, we investigate a three-parameter four-dimensional dynamical system, which is modeled by a set of four first-order nonlinear ordinary differential equations, each of which contains a crossed cubic term. Dynamical behaviors are characterized in the parameter space of the model. In fact, we use some cross-sections of a three-dimensional parameter-space, namely three related parameter planes, to locate regular and chaotic regions, as well as multistability regions. Lyapunov exponents spectra, bifurcation diagrams, and phase-space portraits are used to complete the analysis. |
id |
UDESC-2_30880e4c8fbf190f3b66398f813fc34f |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/4245 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Dynamics of a Four-Dimensional System with Cubic Nonlinearities© 2021 World Scientific Publishing Company.In this paper, we investigate a three-parameter four-dimensional dynamical system, which is modeled by a set of four first-order nonlinear ordinary differential equations, each of which contains a crossed cubic term. Dynamical behaviors are characterized in the parameter space of the model. In fact, we use some cross-sections of a three-dimensional parameter-space, namely three related parameter planes, to locate regular and chaotic regions, as well as multistability regions. Lyapunov exponents spectra, bifurcation diagrams, and phase-space portraits are used to complete the analysis.2024-12-06T11:46:03Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article0218-127410.1142/S0218127421500127https://repositorio.udesc.br/handle/UDESC/4245ark:/33523/001300000n6ddInternational Journal of Bifurcation and Chaos311Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:44:03Zoai:repositorio.udesc.br:UDESC/4245Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:44:03Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Dynamics of a Four-Dimensional System with Cubic Nonlinearities |
title |
Dynamics of a Four-Dimensional System with Cubic Nonlinearities |
spellingShingle |
Dynamics of a Four-Dimensional System with Cubic Nonlinearities Rech P.C.* |
title_short |
Dynamics of a Four-Dimensional System with Cubic Nonlinearities |
title_full |
Dynamics of a Four-Dimensional System with Cubic Nonlinearities |
title_fullStr |
Dynamics of a Four-Dimensional System with Cubic Nonlinearities |
title_full_unstemmed |
Dynamics of a Four-Dimensional System with Cubic Nonlinearities |
title_sort |
Dynamics of a Four-Dimensional System with Cubic Nonlinearities |
author |
Rech P.C.* |
author_facet |
Rech P.C.* |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rech P.C.* |
description |
© 2021 World Scientific Publishing Company.In this paper, we investigate a three-parameter four-dimensional dynamical system, which is modeled by a set of four first-order nonlinear ordinary differential equations, each of which contains a crossed cubic term. Dynamical behaviors are characterized in the parameter space of the model. In fact, we use some cross-sections of a three-dimensional parameter-space, namely three related parameter planes, to locate regular and chaotic regions, as well as multistability regions. Lyapunov exponents spectra, bifurcation diagrams, and phase-space portraits are used to complete the analysis. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2024-12-06T11:46:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
0218-1274 10.1142/S0218127421500127 https://repositorio.udesc.br/handle/UDESC/4245 |
dc.identifier.dark.fl_str_mv |
ark:/33523/001300000n6dd |
identifier_str_mv |
0218-1274 10.1142/S0218127421500127 ark:/33523/001300000n6dd |
url |
https://repositorio.udesc.br/handle/UDESC/4245 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Bifurcation and Chaos 31 1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258149876170752 |