Dynamics of a Four-Dimensional System with Cubic Nonlinearities

Bibliographic Details
Main Author: Rech P.C.*
Publication Date: 2021
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/001300000n6dd
Download full: https://repositorio.udesc.br/handle/UDESC/4245
Summary: © 2021 World Scientific Publishing Company.In this paper, we investigate a three-parameter four-dimensional dynamical system, which is modeled by a set of four first-order nonlinear ordinary differential equations, each of which contains a crossed cubic term. Dynamical behaviors are characterized in the parameter space of the model. In fact, we use some cross-sections of a three-dimensional parameter-space, namely three related parameter planes, to locate regular and chaotic regions, as well as multistability regions. Lyapunov exponents spectra, bifurcation diagrams, and phase-space portraits are used to complete the analysis.
id UDESC-2_30880e4c8fbf190f3b66398f813fc34f
oai_identifier_str oai:repositorio.udesc.br:UDESC/4245
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Dynamics of a Four-Dimensional System with Cubic Nonlinearities© 2021 World Scientific Publishing Company.In this paper, we investigate a three-parameter four-dimensional dynamical system, which is modeled by a set of four first-order nonlinear ordinary differential equations, each of which contains a crossed cubic term. Dynamical behaviors are characterized in the parameter space of the model. In fact, we use some cross-sections of a three-dimensional parameter-space, namely three related parameter planes, to locate regular and chaotic regions, as well as multistability regions. Lyapunov exponents spectra, bifurcation diagrams, and phase-space portraits are used to complete the analysis.2024-12-06T11:46:03Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article0218-127410.1142/S0218127421500127https://repositorio.udesc.br/handle/UDESC/4245ark:/33523/001300000n6ddInternational Journal of Bifurcation and Chaos311Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:44:03Zoai:repositorio.udesc.br:UDESC/4245Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:44:03Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Dynamics of a Four-Dimensional System with Cubic Nonlinearities
title Dynamics of a Four-Dimensional System with Cubic Nonlinearities
spellingShingle Dynamics of a Four-Dimensional System with Cubic Nonlinearities
Rech P.C.*
title_short Dynamics of a Four-Dimensional System with Cubic Nonlinearities
title_full Dynamics of a Four-Dimensional System with Cubic Nonlinearities
title_fullStr Dynamics of a Four-Dimensional System with Cubic Nonlinearities
title_full_unstemmed Dynamics of a Four-Dimensional System with Cubic Nonlinearities
title_sort Dynamics of a Four-Dimensional System with Cubic Nonlinearities
author Rech P.C.*
author_facet Rech P.C.*
author_role author
dc.contributor.author.fl_str_mv Rech P.C.*
description © 2021 World Scientific Publishing Company.In this paper, we investigate a three-parameter four-dimensional dynamical system, which is modeled by a set of four first-order nonlinear ordinary differential equations, each of which contains a crossed cubic term. Dynamical behaviors are characterized in the parameter space of the model. In fact, we use some cross-sections of a three-dimensional parameter-space, namely three related parameter planes, to locate regular and chaotic regions, as well as multistability regions. Lyapunov exponents spectra, bifurcation diagrams, and phase-space portraits are used to complete the analysis.
publishDate 2021
dc.date.none.fl_str_mv 2021
2024-12-06T11:46:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 0218-1274
10.1142/S0218127421500127
https://repositorio.udesc.br/handle/UDESC/4245
dc.identifier.dark.fl_str_mv ark:/33523/001300000n6dd
identifier_str_mv 0218-1274
10.1142/S0218127421500127
ark:/33523/001300000n6dd
url https://repositorio.udesc.br/handle/UDESC/4245
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Bifurcation and Chaos
31
1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258149876170752