Searching chaotic saddles in high dimensions
Main Author: | |
---|---|
Publication Date: | 2016 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/0013000009v2t |
Download full: | https://repositorio.udesc.br/handle/UDESC/7362 |
Summary: | © 2016 Author(s).We propose new methods to numerically approximate non-attracting sets governing transiently chaotic systems. Trajectories starting in a vicinity Ω of these sets escape Ω in a finite time τ and the problem is to find initial conditions x∈Ω with increasingly large τ=τ(x). We search points x' with τ(x')>τ(x) in a search domain in Ω. Our first method considers a search domain with size that decreases exponentially in τ, with an exponent proportional to the largest Lyapunov exponent λ1. Our second method considers anisotropic search domains in the tangent unstable manifold, where each direction scales as the inverse of the corresponding expanding singular value of the Jacobian matrix of the iterated map. We show that both methods outperform the state-of-the-art Stagger-and-Step method [Sweet et al., Phys. Rev. Lett. 86, 2261 (2001)] but that only the anisotropic method achieves an efficiency independent of τ for the case of high-dimensional systems with multiple positive Lyapunov exponents. We perform simulations in a chain of coupled Hénon maps in up to 24 dimensions (12 positive Lyapunov exponents). This suggests the possibility of characterizing also non-attracting sets in spatio-temporal systems. |
id |
UDESC-2_26cbb42aff05a925804d2f8053f54520 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/7362 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Searching chaotic saddles in high dimensions© 2016 Author(s).We propose new methods to numerically approximate non-attracting sets governing transiently chaotic systems. Trajectories starting in a vicinity Ω of these sets escape Ω in a finite time τ and the problem is to find initial conditions x∈Ω with increasingly large τ=τ(x). We search points x' with τ(x')>τ(x) in a search domain in Ω. Our first method considers a search domain with size that decreases exponentially in τ, with an exponent proportional to the largest Lyapunov exponent λ1. Our second method considers anisotropic search domains in the tangent unstable manifold, where each direction scales as the inverse of the corresponding expanding singular value of the Jacobian matrix of the iterated map. We show that both methods outperform the state-of-the-art Stagger-and-Step method [Sweet et al., Phys. Rev. Lett. 86, 2261 (2001)] but that only the anisotropic method achieves an efficiency independent of τ for the case of high-dimensional systems with multiple positive Lyapunov exponents. We perform simulations in a chain of coupled Hénon maps in up to 24 dimensions (12 positive Lyapunov exponents). This suggests the possibility of characterizing also non-attracting sets in spatio-temporal systems.2024-12-06T13:25:45Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1054-150010.1063/1.4973235https://repositorio.udesc.br/handle/UDESC/7362ark:/33523/0013000009v2tChaos2612Sala M.*Leitao J.C.Altmann E.G.engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:53:58Zoai:repositorio.udesc.br:UDESC/7362Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:53:58Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Searching chaotic saddles in high dimensions |
title |
Searching chaotic saddles in high dimensions |
spellingShingle |
Searching chaotic saddles in high dimensions Sala M.* |
title_short |
Searching chaotic saddles in high dimensions |
title_full |
Searching chaotic saddles in high dimensions |
title_fullStr |
Searching chaotic saddles in high dimensions |
title_full_unstemmed |
Searching chaotic saddles in high dimensions |
title_sort |
Searching chaotic saddles in high dimensions |
author |
Sala M.* |
author_facet |
Sala M.* Leitao J.C. Altmann E.G. |
author_role |
author |
author2 |
Leitao J.C. Altmann E.G. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Sala M.* Leitao J.C. Altmann E.G. |
description |
© 2016 Author(s).We propose new methods to numerically approximate non-attracting sets governing transiently chaotic systems. Trajectories starting in a vicinity Ω of these sets escape Ω in a finite time τ and the problem is to find initial conditions x∈Ω with increasingly large τ=τ(x). We search points x' with τ(x')>τ(x) in a search domain in Ω. Our first method considers a search domain with size that decreases exponentially in τ, with an exponent proportional to the largest Lyapunov exponent λ1. Our second method considers anisotropic search domains in the tangent unstable manifold, where each direction scales as the inverse of the corresponding expanding singular value of the Jacobian matrix of the iterated map. We show that both methods outperform the state-of-the-art Stagger-and-Step method [Sweet et al., Phys. Rev. Lett. 86, 2261 (2001)] but that only the anisotropic method achieves an efficiency independent of τ for the case of high-dimensional systems with multiple positive Lyapunov exponents. We perform simulations in a chain of coupled Hénon maps in up to 24 dimensions (12 positive Lyapunov exponents). This suggests the possibility of characterizing also non-attracting sets in spatio-temporal systems. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2024-12-06T13:25:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1054-1500 10.1063/1.4973235 https://repositorio.udesc.br/handle/UDESC/7362 |
dc.identifier.dark.fl_str_mv |
ark:/33523/0013000009v2t |
identifier_str_mv |
1054-1500 10.1063/1.4973235 ark:/33523/0013000009v2t |
url |
https://repositorio.udesc.br/handle/UDESC/7362 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Chaos 26 12 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258108687056896 |