Searching chaotic saddles in high dimensions

Bibliographic Details
Main Author: Sala M.*
Publication Date: 2016
Other Authors: Leitao J.C., Altmann E.G.
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/0013000009v2t
Download full: https://repositorio.udesc.br/handle/UDESC/7362
Summary: © 2016 Author(s).We propose new methods to numerically approximate non-attracting sets governing transiently chaotic systems. Trajectories starting in a vicinity Ω of these sets escape Ω in a finite time τ and the problem is to find initial conditions x∈Ω with increasingly large τ=τ(x). We search points x' with τ(x')>τ(x) in a search domain in Ω. Our first method considers a search domain with size that decreases exponentially in τ, with an exponent proportional to the largest Lyapunov exponent λ1. Our second method considers anisotropic search domains in the tangent unstable manifold, where each direction scales as the inverse of the corresponding expanding singular value of the Jacobian matrix of the iterated map. We show that both methods outperform the state-of-the-art Stagger-and-Step method [Sweet et al., Phys. Rev. Lett. 86, 2261 (2001)] but that only the anisotropic method achieves an efficiency independent of τ for the case of high-dimensional systems with multiple positive Lyapunov exponents. We perform simulations in a chain of coupled Hénon maps in up to 24 dimensions (12 positive Lyapunov exponents). This suggests the possibility of characterizing also non-attracting sets in spatio-temporal systems.
id UDESC-2_26cbb42aff05a925804d2f8053f54520
oai_identifier_str oai:repositorio.udesc.br:UDESC/7362
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Searching chaotic saddles in high dimensions© 2016 Author(s).We propose new methods to numerically approximate non-attracting sets governing transiently chaotic systems. Trajectories starting in a vicinity Ω of these sets escape Ω in a finite time τ and the problem is to find initial conditions x∈Ω with increasingly large τ=τ(x). We search points x' with τ(x')>τ(x) in a search domain in Ω. Our first method considers a search domain with size that decreases exponentially in τ, with an exponent proportional to the largest Lyapunov exponent λ1. Our second method considers anisotropic search domains in the tangent unstable manifold, where each direction scales as the inverse of the corresponding expanding singular value of the Jacobian matrix of the iterated map. We show that both methods outperform the state-of-the-art Stagger-and-Step method [Sweet et al., Phys. Rev. Lett. 86, 2261 (2001)] but that only the anisotropic method achieves an efficiency independent of τ for the case of high-dimensional systems with multiple positive Lyapunov exponents. We perform simulations in a chain of coupled Hénon maps in up to 24 dimensions (12 positive Lyapunov exponents). This suggests the possibility of characterizing also non-attracting sets in spatio-temporal systems.2024-12-06T13:25:45Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1054-150010.1063/1.4973235https://repositorio.udesc.br/handle/UDESC/7362ark:/33523/0013000009v2tChaos2612Sala M.*Leitao J.C.Altmann E.G.engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:53:58Zoai:repositorio.udesc.br:UDESC/7362Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:53:58Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Searching chaotic saddles in high dimensions
title Searching chaotic saddles in high dimensions
spellingShingle Searching chaotic saddles in high dimensions
Sala M.*
title_short Searching chaotic saddles in high dimensions
title_full Searching chaotic saddles in high dimensions
title_fullStr Searching chaotic saddles in high dimensions
title_full_unstemmed Searching chaotic saddles in high dimensions
title_sort Searching chaotic saddles in high dimensions
author Sala M.*
author_facet Sala M.*
Leitao J.C.
Altmann E.G.
author_role author
author2 Leitao J.C.
Altmann E.G.
author2_role author
author
dc.contributor.author.fl_str_mv Sala M.*
Leitao J.C.
Altmann E.G.
description © 2016 Author(s).We propose new methods to numerically approximate non-attracting sets governing transiently chaotic systems. Trajectories starting in a vicinity Ω of these sets escape Ω in a finite time τ and the problem is to find initial conditions x∈Ω with increasingly large τ=τ(x). We search points x' with τ(x')>τ(x) in a search domain in Ω. Our first method considers a search domain with size that decreases exponentially in τ, with an exponent proportional to the largest Lyapunov exponent λ1. Our second method considers anisotropic search domains in the tangent unstable manifold, where each direction scales as the inverse of the corresponding expanding singular value of the Jacobian matrix of the iterated map. We show that both methods outperform the state-of-the-art Stagger-and-Step method [Sweet et al., Phys. Rev. Lett. 86, 2261 (2001)] but that only the anisotropic method achieves an efficiency independent of τ for the case of high-dimensional systems with multiple positive Lyapunov exponents. We perform simulations in a chain of coupled Hénon maps in up to 24 dimensions (12 positive Lyapunov exponents). This suggests the possibility of characterizing also non-attracting sets in spatio-temporal systems.
publishDate 2016
dc.date.none.fl_str_mv 2016
2024-12-06T13:25:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1054-1500
10.1063/1.4973235
https://repositorio.udesc.br/handle/UDESC/7362
dc.identifier.dark.fl_str_mv ark:/33523/0013000009v2t
identifier_str_mv 1054-1500
10.1063/1.4973235
ark:/33523/0013000009v2t
url https://repositorio.udesc.br/handle/UDESC/7362
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Chaos
26
12
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258108687056896