Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators

Bibliographic Details
Main Author: Caneco, Acilina
Publication Date: 2009
Other Authors: Rocha, J. Leonel, Grácio, Clara
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.21/1284
Summary: In this paper is presented a relationship between the synchronization and the topological entropy. We obtain the values for the coupling parameter, in terms of the topological entropy, to achieve synchronization of two unidirectional and bidirectional coupled piecewise linear maps. In addition, we prove a result that relates the synchronizability of two m-modal maps with the synchronizability of two conjugated piecewise linear maps. An application to the unidirectional and bidirectional coupled identical chaotic Duffing equations is given. We discuss the complete synchronization of two identical double-well Duffing oscillators, from the point of view of symbolic dynamics. Working with Poincare cross-sections and the return maps associated, the synchronization of the two oscillators, in terms of the coupling strength, is characterized.
id RCAP_fc37edb6f0074cdd4be490cdf7494e56
oai_identifier_str oai:repositorio.ipl.pt:10400.21/1284
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing OscillatorsSynchronizationChaosTopological EntropyDuffing OscillatorKneading TheorySymbolic DynamicsChaotic SystemsIntervalMappingsIn this paper is presented a relationship between the synchronization and the topological entropy. We obtain the values for the coupling parameter, in terms of the topological entropy, to achieve synchronization of two unidirectional and bidirectional coupled piecewise linear maps. In addition, we prove a result that relates the synchronizability of two m-modal maps with the synchronizability of two conjugated piecewise linear maps. An application to the unidirectional and bidirectional coupled identical chaotic Duffing equations is given. We discuss the complete synchronization of two identical double-well Duffing oscillators, from the point of view of symbolic dynamics. Working with Poincare cross-sections and the return maps associated, the synchronization of the two oscillators, in terms of the coupling strength, is characterized.World Scientific Publ CO PTE LTDRCIPLCaneco, AcilinaRocha, J. LeonelGrácio, Clara2012-03-13T17:08:28Z2009-112009-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/1284eng0218-1274info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-12T10:46:27Zoai:repositorio.ipl.pt:10400.21/1284Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:08:05.749993Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators
title Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators
spellingShingle Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators
Caneco, Acilina
Synchronization
Chaos
Topological Entropy
Duffing Oscillator
Kneading Theory
Symbolic Dynamics
Chaotic Systems
Interval
Mappings
title_short Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators
title_full Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators
title_fullStr Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators
title_full_unstemmed Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators
title_sort Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators
author Caneco, Acilina
author_facet Caneco, Acilina
Rocha, J. Leonel
Grácio, Clara
author_role author
author2 Rocha, J. Leonel
Grácio, Clara
author2_role author
author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv Caneco, Acilina
Rocha, J. Leonel
Grácio, Clara
dc.subject.por.fl_str_mv Synchronization
Chaos
Topological Entropy
Duffing Oscillator
Kneading Theory
Symbolic Dynamics
Chaotic Systems
Interval
Mappings
topic Synchronization
Chaos
Topological Entropy
Duffing Oscillator
Kneading Theory
Symbolic Dynamics
Chaotic Systems
Interval
Mappings
description In this paper is presented a relationship between the synchronization and the topological entropy. We obtain the values for the coupling parameter, in terms of the topological entropy, to achieve synchronization of two unidirectional and bidirectional coupled piecewise linear maps. In addition, we prove a result that relates the synchronizability of two m-modal maps with the synchronizability of two conjugated piecewise linear maps. An application to the unidirectional and bidirectional coupled identical chaotic Duffing equations is given. We discuss the complete synchronization of two identical double-well Duffing oscillators, from the point of view of symbolic dynamics. Working with Poincare cross-sections and the return maps associated, the synchronization of the two oscillators, in terms of the coupling strength, is characterized.
publishDate 2009
dc.date.none.fl_str_mv 2009-11
2009-11-01T00:00:00Z
2012-03-13T17:08:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/1284
url http://hdl.handle.net/10400.21/1284
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0218-1274
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv World Scientific Publ CO PTE LTD
publisher.none.fl_str_mv World Scientific Publ CO PTE LTD
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598508375998464