Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators
| Main Author: | |
|---|---|
| Publication Date: | 2009 |
| Other Authors: | , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.21/1284 |
Summary: | In this paper is presented a relationship between the synchronization and the topological entropy. We obtain the values for the coupling parameter, in terms of the topological entropy, to achieve synchronization of two unidirectional and bidirectional coupled piecewise linear maps. In addition, we prove a result that relates the synchronizability of two m-modal maps with the synchronizability of two conjugated piecewise linear maps. An application to the unidirectional and bidirectional coupled identical chaotic Duffing equations is given. We discuss the complete synchronization of two identical double-well Duffing oscillators, from the point of view of symbolic dynamics. Working with Poincare cross-sections and the return maps associated, the synchronization of the two oscillators, in terms of the coupling strength, is characterized. |
| id |
RCAP_fc37edb6f0074cdd4be490cdf7494e56 |
|---|---|
| oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/1284 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing OscillatorsSynchronizationChaosTopological EntropyDuffing OscillatorKneading TheorySymbolic DynamicsChaotic SystemsIntervalMappingsIn this paper is presented a relationship between the synchronization and the topological entropy. We obtain the values for the coupling parameter, in terms of the topological entropy, to achieve synchronization of two unidirectional and bidirectional coupled piecewise linear maps. In addition, we prove a result that relates the synchronizability of two m-modal maps with the synchronizability of two conjugated piecewise linear maps. An application to the unidirectional and bidirectional coupled identical chaotic Duffing equations is given. We discuss the complete synchronization of two identical double-well Duffing oscillators, from the point of view of symbolic dynamics. Working with Poincare cross-sections and the return maps associated, the synchronization of the two oscillators, in terms of the coupling strength, is characterized.World Scientific Publ CO PTE LTDRCIPLCaneco, AcilinaRocha, J. LeonelGrácio, Clara2012-03-13T17:08:28Z2009-112009-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/1284eng0218-1274info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-12T10:46:27Zoai:repositorio.ipl.pt:10400.21/1284Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:08:05.749993Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators |
| title |
Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators |
| spellingShingle |
Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators Caneco, Acilina Synchronization Chaos Topological Entropy Duffing Oscillator Kneading Theory Symbolic Dynamics Chaotic Systems Interval Mappings |
| title_short |
Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators |
| title_full |
Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators |
| title_fullStr |
Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators |
| title_full_unstemmed |
Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators |
| title_sort |
Toplological Entropy in the Syncronization of Piecewise Linear and Monotone Maps. Coupled Duffing Oscillators |
| author |
Caneco, Acilina |
| author_facet |
Caneco, Acilina Rocha, J. Leonel Grácio, Clara |
| author_role |
author |
| author2 |
Rocha, J. Leonel Grácio, Clara |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
RCIPL |
| dc.contributor.author.fl_str_mv |
Caneco, Acilina Rocha, J. Leonel Grácio, Clara |
| dc.subject.por.fl_str_mv |
Synchronization Chaos Topological Entropy Duffing Oscillator Kneading Theory Symbolic Dynamics Chaotic Systems Interval Mappings |
| topic |
Synchronization Chaos Topological Entropy Duffing Oscillator Kneading Theory Symbolic Dynamics Chaotic Systems Interval Mappings |
| description |
In this paper is presented a relationship between the synchronization and the topological entropy. We obtain the values for the coupling parameter, in terms of the topological entropy, to achieve synchronization of two unidirectional and bidirectional coupled piecewise linear maps. In addition, we prove a result that relates the synchronizability of two m-modal maps with the synchronizability of two conjugated piecewise linear maps. An application to the unidirectional and bidirectional coupled identical chaotic Duffing equations is given. We discuss the complete synchronization of two identical double-well Duffing oscillators, from the point of view of symbolic dynamics. Working with Poincare cross-sections and the return maps associated, the synchronization of the two oscillators, in terms of the coupling strength, is characterized. |
| publishDate |
2009 |
| dc.date.none.fl_str_mv |
2009-11 2009-11-01T00:00:00Z 2012-03-13T17:08:28Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/1284 |
| url |
http://hdl.handle.net/10400.21/1284 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
0218-1274 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
World Scientific Publ CO PTE LTD |
| publisher.none.fl_str_mv |
World Scientific Publ CO PTE LTD |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598508375998464 |