Symbolic Dynamics and chaotic synchronization
| Main Author: | |
|---|---|
| Publication Date: | 2011 |
| Other Authors: | , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10174/4540 |
Summary: | Chaotic communications schemes based on synchronization aim to provide security over the conventional communication schemes. Symbolic dynamics based on synchronization methods has provided high quality synchronization [5]. Symbolic dynamics is a rigorous way to investigate chaotic behavior with finite precision and can be used combined with information theory [13]. In previous works we have studied the kneading theory analysis of the Duffing equation [3] and the symbolic dynamics and chaotic synchronization in coupled Duffing oscillators [2] and [4]. In this work we consider the complete synchronization of two identical coupled unimodal and bimodal maps. We relate the synchronization with the symbolic dynamics, namely, defining a distance between the kneading sequences generated by the map iterates in its critical points and defining n-symbolic synchronization. We establish the synchronization in terms of the topological entropy of two unidirectional or bidirectional coupled piecewise linear unimodal and bimodal maps. We also give numerical simulations with coupled Duffing oscillators that exhibit numerical evidence of the n-symbolic synchronization. |
| id |
RCAP_90f268cd02e6ea15cf0617af7fc81713 |
|---|---|
| oai_identifier_str |
oai:dspace.uevora.pt:10174/4540 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Symbolic Dynamics and chaotic synchronizationChaotic synchronizationsymbolic dynamicssymbolic synchronizationkneading theoryChaotic communications schemes based on synchronization aim to provide security over the conventional communication schemes. Symbolic dynamics based on synchronization methods has provided high quality synchronization [5]. Symbolic dynamics is a rigorous way to investigate chaotic behavior with finite precision and can be used combined with information theory [13]. In previous works we have studied the kneading theory analysis of the Duffing equation [3] and the symbolic dynamics and chaotic synchronization in coupled Duffing oscillators [2] and [4]. In this work we consider the complete synchronization of two identical coupled unimodal and bimodal maps. We relate the synchronization with the symbolic dynamics, namely, defining a distance between the kneading sequences generated by the map iterates in its critical points and defining n-symbolic synchronization. We establish the synchronization in terms of the topological entropy of two unidirectional or bidirectional coupled piecewise linear unimodal and bimodal maps. We also give numerical simulations with coupled Duffing oscillators that exhibit numerical evidence of the n-symbolic synchronization.World Scientific2012-01-30T13:03:58Z2012-01-302011-01-01T00:00:00Zbook partinfo:eu-repo/semantics/publishedVersionhttp://hdl.handle.net/10174/4540http://hdl.handle.net/10174/4540eng13 978-981-4350-33-410 981-4350-33-8mgracio@uevora.ptacilina@deetc.isel.ipl.ptjrocha@deq.isel.ipl.pt721Grácio, ClaraCaneco, AcilinaRocha, Joséinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T18:42:29Zoai:dspace.uevora.pt:10174/4540Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:53:41.478697Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Symbolic Dynamics and chaotic synchronization |
| title |
Symbolic Dynamics and chaotic synchronization |
| spellingShingle |
Symbolic Dynamics and chaotic synchronization Grácio, Clara Chaotic synchronization symbolic dynamics symbolic synchronization kneading theory |
| title_short |
Symbolic Dynamics and chaotic synchronization |
| title_full |
Symbolic Dynamics and chaotic synchronization |
| title_fullStr |
Symbolic Dynamics and chaotic synchronization |
| title_full_unstemmed |
Symbolic Dynamics and chaotic synchronization |
| title_sort |
Symbolic Dynamics and chaotic synchronization |
| author |
Grácio, Clara |
| author_facet |
Grácio, Clara Caneco, Acilina Rocha, José |
| author_role |
author |
| author2 |
Caneco, Acilina Rocha, José |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Grácio, Clara Caneco, Acilina Rocha, José |
| dc.subject.por.fl_str_mv |
Chaotic synchronization symbolic dynamics symbolic synchronization kneading theory |
| topic |
Chaotic synchronization symbolic dynamics symbolic synchronization kneading theory |
| description |
Chaotic communications schemes based on synchronization aim to provide security over the conventional communication schemes. Symbolic dynamics based on synchronization methods has provided high quality synchronization [5]. Symbolic dynamics is a rigorous way to investigate chaotic behavior with finite precision and can be used combined with information theory [13]. In previous works we have studied the kneading theory analysis of the Duffing equation [3] and the symbolic dynamics and chaotic synchronization in coupled Duffing oscillators [2] and [4]. In this work we consider the complete synchronization of two identical coupled unimodal and bimodal maps. We relate the synchronization with the symbolic dynamics, namely, defining a distance between the kneading sequences generated by the map iterates in its critical points and defining n-symbolic synchronization. We establish the synchronization in terms of the topological entropy of two unidirectional or bidirectional coupled piecewise linear unimodal and bimodal maps. We also give numerical simulations with coupled Duffing oscillators that exhibit numerical evidence of the n-symbolic synchronization. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-01-01T00:00:00Z 2012-01-30T13:03:58Z 2012-01-30 |
| dc.type.driver.fl_str_mv |
book part |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/4540 http://hdl.handle.net/10174/4540 |
| url |
http://hdl.handle.net/10174/4540 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
13 978-981-4350-33-4 10 981-4350-33-8 mgracio@uevora.pt acilina@deetc.isel.ipl.pt jrocha@deq.isel.ipl.pt 721 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
World Scientific |
| publisher.none.fl_str_mv |
World Scientific |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833592335693250560 |