Harmonic analysis on the Möbius gyrogroup
Main Author: | |
---|---|
Publication Date: | 2015 |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/14179 |
Summary: | In this paper we propose to develop harmonic analysis on the Poincaré ball $B_t^n$, a model of the n-dimensional real hyperbolic space. The Poincaré ball $B_t^n$ is the open ball of the Euclidean n-space $R^n$ with radius $t>0$, centered at the origin of $R^n$ and equipped with Möbius addition, thus forming a Möbius gyrogroup where Möbius addition in the ball plays the role of vector addition in $\mathbb{R}^n$. For any $t>0$ and an arbitrary parameter $\sigma \in R$ we study the $(\sigma,t)$-translation, the $( \sigma,t)$-convolution, the eigenfunctions of the $(\sigma,t)$-Laplace-Beltrami operator, the $(\sigma,t)$-Helgason Fourier transform, its inverse transform and the associated Plancherel's Theorem, which represent counterparts of standard tools, thus, enabling an effective theory of hyperbolic harmonic analysis. Moreover, when $t \rightarrow +\infty$ the resulting hyperbolic harmonic analysis on $B_t^n$ tends to the standard Euclidean harmonic analysis on $R^n$, thus unifying hyperbolic and Euclidean harmonic analysis. As an application we construct diffusive wavelets on $B_t^n$. |
id |
RCAP_f53c6c76dbbe976fc3639b62c4398e89 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/14179 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Harmonic analysis on the Möbius gyrogroupMöbius gyrogroupHelgason-Fourier transformSpherical functionsHyperbolic convolutionEigenfunctions of the Laplace-Beltrami-operatorDiffusive waveletsIn this paper we propose to develop harmonic analysis on the Poincaré ball $B_t^n$, a model of the n-dimensional real hyperbolic space. The Poincaré ball $B_t^n$ is the open ball of the Euclidean n-space $R^n$ with radius $t>0$, centered at the origin of $R^n$ and equipped with Möbius addition, thus forming a Möbius gyrogroup where Möbius addition in the ball plays the role of vector addition in $\mathbb{R}^n$. For any $t>0$ and an arbitrary parameter $\sigma \in R$ we study the $(\sigma,t)$-translation, the $( \sigma,t)$-convolution, the eigenfunctions of the $(\sigma,t)$-Laplace-Beltrami operator, the $(\sigma,t)$-Helgason Fourier transform, its inverse transform and the associated Plancherel's Theorem, which represent counterparts of standard tools, thus, enabling an effective theory of hyperbolic harmonic analysis. Moreover, when $t \rightarrow +\infty$ the resulting hyperbolic harmonic analysis on $B_t^n$ tends to the standard Euclidean harmonic analysis on $R^n$, thus unifying hyperbolic and Euclidean harmonic analysis. As an application we construct diffusive wavelets on $B_t^n$.Springer2015-042015-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/14179eng1531-585110.1007/s00041-014-9370-1Ferreira, Miltoninfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:54:05Zoai:ria.ua.pt:10773/14179Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:50:13.809226Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Harmonic analysis on the Möbius gyrogroup |
title |
Harmonic analysis on the Möbius gyrogroup |
spellingShingle |
Harmonic analysis on the Möbius gyrogroup Ferreira, Milton Möbius gyrogroup Helgason-Fourier transform Spherical functions Hyperbolic convolution Eigenfunctions of the Laplace-Beltrami-operator Diffusive wavelets |
title_short |
Harmonic analysis on the Möbius gyrogroup |
title_full |
Harmonic analysis on the Möbius gyrogroup |
title_fullStr |
Harmonic analysis on the Möbius gyrogroup |
title_full_unstemmed |
Harmonic analysis on the Möbius gyrogroup |
title_sort |
Harmonic analysis on the Möbius gyrogroup |
author |
Ferreira, Milton |
author_facet |
Ferreira, Milton |
author_role |
author |
dc.contributor.author.fl_str_mv |
Ferreira, Milton |
dc.subject.por.fl_str_mv |
Möbius gyrogroup Helgason-Fourier transform Spherical functions Hyperbolic convolution Eigenfunctions of the Laplace-Beltrami-operator Diffusive wavelets |
topic |
Möbius gyrogroup Helgason-Fourier transform Spherical functions Hyperbolic convolution Eigenfunctions of the Laplace-Beltrami-operator Diffusive wavelets |
description |
In this paper we propose to develop harmonic analysis on the Poincaré ball $B_t^n$, a model of the n-dimensional real hyperbolic space. The Poincaré ball $B_t^n$ is the open ball of the Euclidean n-space $R^n$ with radius $t>0$, centered at the origin of $R^n$ and equipped with Möbius addition, thus forming a Möbius gyrogroup where Möbius addition in the ball plays the role of vector addition in $\mathbb{R}^n$. For any $t>0$ and an arbitrary parameter $\sigma \in R$ we study the $(\sigma,t)$-translation, the $( \sigma,t)$-convolution, the eigenfunctions of the $(\sigma,t)$-Laplace-Beltrami operator, the $(\sigma,t)$-Helgason Fourier transform, its inverse transform and the associated Plancherel's Theorem, which represent counterparts of standard tools, thus, enabling an effective theory of hyperbolic harmonic analysis. Moreover, when $t \rightarrow +\infty$ the resulting hyperbolic harmonic analysis on $B_t^n$ tends to the standard Euclidean harmonic analysis on $R^n$, thus unifying hyperbolic and Euclidean harmonic analysis. As an application we construct diffusive wavelets on $B_t^n$. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 2015-04-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/14179 |
url |
http://hdl.handle.net/10773/14179 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1531-5851 10.1007/s00041-014-9370-1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594115075342336 |