Export Ready — 

Harmonic analysis on the Möbius gyrogroup

Bibliographic Details
Main Author: Ferreira, Milton
Publication Date: 2015
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/14179
Summary: In this paper we propose to develop harmonic analysis on the Poincaré ball $B_t^n$, a model of the n-dimensional real hyperbolic space. The Poincaré ball $B_t^n$ is the open ball of the Euclidean n-space $R^n$ with radius $t>0$, centered at the origin of $R^n$ and equipped with Möbius addition, thus forming a Möbius gyrogroup where Möbius addition in the ball plays the role of vector addition in $\mathbb{R}^n$. For any $t>0$ and an arbitrary parameter $\sigma \in R$ we study the $(\sigma,t)$-translation, the $( \sigma,t)$-convolution, the eigenfunctions of the $(\sigma,t)$-Laplace-Beltrami operator, the $(\sigma,t)$-Helgason Fourier transform, its inverse transform and the associated Plancherel's Theorem, which represent counterparts of standard tools, thus, enabling an effective theory of hyperbolic harmonic analysis. Moreover, when $t \rightarrow +\infty$ the resulting hyperbolic harmonic analysis on $B_t^n$ tends to the standard Euclidean harmonic analysis on $R^n$, thus unifying hyperbolic and Euclidean harmonic analysis. As an application we construct diffusive wavelets on $B_t^n$.
id RCAP_f53c6c76dbbe976fc3639b62c4398e89
oai_identifier_str oai:ria.ua.pt:10773/14179
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Harmonic analysis on the Möbius gyrogroupMöbius gyrogroupHelgason-Fourier transformSpherical functionsHyperbolic convolutionEigenfunctions of the Laplace-Beltrami-operatorDiffusive waveletsIn this paper we propose to develop harmonic analysis on the Poincaré ball $B_t^n$, a model of the n-dimensional real hyperbolic space. The Poincaré ball $B_t^n$ is the open ball of the Euclidean n-space $R^n$ with radius $t>0$, centered at the origin of $R^n$ and equipped with Möbius addition, thus forming a Möbius gyrogroup where Möbius addition in the ball plays the role of vector addition in $\mathbb{R}^n$. For any $t>0$ and an arbitrary parameter $\sigma \in R$ we study the $(\sigma,t)$-translation, the $( \sigma,t)$-convolution, the eigenfunctions of the $(\sigma,t)$-Laplace-Beltrami operator, the $(\sigma,t)$-Helgason Fourier transform, its inverse transform and the associated Plancherel's Theorem, which represent counterparts of standard tools, thus, enabling an effective theory of hyperbolic harmonic analysis. Moreover, when $t \rightarrow +\infty$ the resulting hyperbolic harmonic analysis on $B_t^n$ tends to the standard Euclidean harmonic analysis on $R^n$, thus unifying hyperbolic and Euclidean harmonic analysis. As an application we construct diffusive wavelets on $B_t^n$.Springer2015-042015-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/14179eng1531-585110.1007/s00041-014-9370-1Ferreira, Miltoninfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:54:05Zoai:ria.ua.pt:10773/14179Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:50:13.809226Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Harmonic analysis on the Möbius gyrogroup
title Harmonic analysis on the Möbius gyrogroup
spellingShingle Harmonic analysis on the Möbius gyrogroup
Ferreira, Milton
Möbius gyrogroup
Helgason-Fourier transform
Spherical functions
Hyperbolic convolution
Eigenfunctions of the Laplace-Beltrami-operator
Diffusive wavelets
title_short Harmonic analysis on the Möbius gyrogroup
title_full Harmonic analysis on the Möbius gyrogroup
title_fullStr Harmonic analysis on the Möbius gyrogroup
title_full_unstemmed Harmonic analysis on the Möbius gyrogroup
title_sort Harmonic analysis on the Möbius gyrogroup
author Ferreira, Milton
author_facet Ferreira, Milton
author_role author
dc.contributor.author.fl_str_mv Ferreira, Milton
dc.subject.por.fl_str_mv Möbius gyrogroup
Helgason-Fourier transform
Spherical functions
Hyperbolic convolution
Eigenfunctions of the Laplace-Beltrami-operator
Diffusive wavelets
topic Möbius gyrogroup
Helgason-Fourier transform
Spherical functions
Hyperbolic convolution
Eigenfunctions of the Laplace-Beltrami-operator
Diffusive wavelets
description In this paper we propose to develop harmonic analysis on the Poincaré ball $B_t^n$, a model of the n-dimensional real hyperbolic space. The Poincaré ball $B_t^n$ is the open ball of the Euclidean n-space $R^n$ with radius $t>0$, centered at the origin of $R^n$ and equipped with Möbius addition, thus forming a Möbius gyrogroup where Möbius addition in the ball plays the role of vector addition in $\mathbb{R}^n$. For any $t>0$ and an arbitrary parameter $\sigma \in R$ we study the $(\sigma,t)$-translation, the $( \sigma,t)$-convolution, the eigenfunctions of the $(\sigma,t)$-Laplace-Beltrami operator, the $(\sigma,t)$-Helgason Fourier transform, its inverse transform and the associated Plancherel's Theorem, which represent counterparts of standard tools, thus, enabling an effective theory of hyperbolic harmonic analysis. Moreover, when $t \rightarrow +\infty$ the resulting hyperbolic harmonic analysis on $B_t^n$ tends to the standard Euclidean harmonic analysis on $R^n$, thus unifying hyperbolic and Euclidean harmonic analysis. As an application we construct diffusive wavelets on $B_t^n$.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
2015-04-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/14179
url http://hdl.handle.net/10773/14179
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1531-5851
10.1007/s00041-014-9370-1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594115075342336