Harmonic analysis on the proper velocity gyrogroup

Bibliographic Details
Main Author: Ferreira, Milton
Publication Date: 2017
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/16613
Summary: In this paper we study harmonic analysis on the Proper Velocity (PV) gyrogroup using the gyrolanguage of analytic hyperbolic geometry. PV addition is the relativistic addition of proper velocities in special relativity and it is related with the hyperboloid model of hyperbolic geometry. The generalized harmonic analysis depends on a complex parameter $z$ and on the radius $t$ of the hyperboloid and comprises the study of the generalized translation operator, the associated convolution operator, the generalized Laplace-Beltrami operator and its eigenfunctions, the generalized Poisson transform and its inverse, the generalized Helgason-Fourier transform, its inverse and Plancherel's Theorem. In the limit of large $t,$ $t \rightarrow +\infty,$ the generalized harmonic analysis on the hyperboloid tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis.
id RCAP_0c3c79d6ed89014c2fef2efb83c9c450
oai_identifier_str oai:ria.ua.pt:10773/16613
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Harmonic analysis on the proper velocity gyrogroupPV gyrogroupLaplace Beltrami operatorEigenfunctionsGeneralized Helgason-Fourier transformPlancherel's TheoremIn this paper we study harmonic analysis on the Proper Velocity (PV) gyrogroup using the gyrolanguage of analytic hyperbolic geometry. PV addition is the relativistic addition of proper velocities in special relativity and it is related with the hyperboloid model of hyperbolic geometry. The generalized harmonic analysis depends on a complex parameter $z$ and on the radius $t$ of the hyperboloid and comprises the study of the generalized translation operator, the associated convolution operator, the generalized Laplace-Beltrami operator and its eigenfunctions, the generalized Poisson transform and its inverse, the generalized Helgason-Fourier transform, its inverse and Plancherel's Theorem. In the limit of large $t,$ $t \rightarrow +\infty,$ the generalized harmonic analysis on the hyperboloid tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis.Duke University Press2017-01-09T18:44:31Z2017-01-01T00:00:00Z2017-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/16613eng1735-8787Ferreira, Miltoninfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:59:07Zoai:ria.ua.pt:10773/16613Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:53:30.248922Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Harmonic analysis on the proper velocity gyrogroup
title Harmonic analysis on the proper velocity gyrogroup
spellingShingle Harmonic analysis on the proper velocity gyrogroup
Ferreira, Milton
PV gyrogroup
Laplace Beltrami operator
Eigenfunctions
Generalized Helgason-Fourier transform
Plancherel's Theorem
title_short Harmonic analysis on the proper velocity gyrogroup
title_full Harmonic analysis on the proper velocity gyrogroup
title_fullStr Harmonic analysis on the proper velocity gyrogroup
title_full_unstemmed Harmonic analysis on the proper velocity gyrogroup
title_sort Harmonic analysis on the proper velocity gyrogroup
author Ferreira, Milton
author_facet Ferreira, Milton
author_role author
dc.contributor.author.fl_str_mv Ferreira, Milton
dc.subject.por.fl_str_mv PV gyrogroup
Laplace Beltrami operator
Eigenfunctions
Generalized Helgason-Fourier transform
Plancherel's Theorem
topic PV gyrogroup
Laplace Beltrami operator
Eigenfunctions
Generalized Helgason-Fourier transform
Plancherel's Theorem
description In this paper we study harmonic analysis on the Proper Velocity (PV) gyrogroup using the gyrolanguage of analytic hyperbolic geometry. PV addition is the relativistic addition of proper velocities in special relativity and it is related with the hyperboloid model of hyperbolic geometry. The generalized harmonic analysis depends on a complex parameter $z$ and on the radius $t$ of the hyperboloid and comprises the study of the generalized translation operator, the associated convolution operator, the generalized Laplace-Beltrami operator and its eigenfunctions, the generalized Poisson transform and its inverse, the generalized Helgason-Fourier transform, its inverse and Plancherel's Theorem. In the limit of large $t,$ $t \rightarrow +\infty,$ the generalized harmonic analysis on the hyperboloid tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-09T18:44:31Z
2017-01-01T00:00:00Z
2017-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/16613
url http://hdl.handle.net/10773/16613
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1735-8787
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Duke University Press
publisher.none.fl_str_mv Duke University Press
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594167284989952