Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/81554 |
Summary: | The automotive industry is facing an unprecedented technological transformation towards fully autonomous vehicles. Optimists predict that, by 2030, cars will be sufficiently reliable, affordable, and common to displace most current human driving tasks. To cope with these trends, autonomous vehicles require reliable perception systems to hear and see all the surroundings, being light detection and ranging (LiDAR) sensors a key instrument for recreating a 3D visualization of the world. However, for a reliable operation, such systems require LiDAR sensors to provide high-resolution 3D representations of the car’s vicinity, which results in millions of data points to be processed in real-time. With this article we propose the ALFA-Pi, a data packet decoder and reconstruction system fully deployed on an embedded reconfigurable hardware platform. By resorting to field-programmable gate array (FPGA) technology, ALFAPi is able to interface different LiDAR sensors at the same time, while providing custom representation outputs to high-level perception systems. By accelerating the LiDAR interface, the proposed system outperforms current software-only approaches, achieving lower latency in the data acquisition and data decoding tasks while reaching high performance ratios. |
id |
RCAP_f385dc0f8d3a9a9b90246a64f45ad169 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/81554 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensorsAutonomous vehiclesLiDARFPGAData representationLiDAR point cloudEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaIndústria, inovação e infraestruturasThe automotive industry is facing an unprecedented technological transformation towards fully autonomous vehicles. Optimists predict that, by 2030, cars will be sufficiently reliable, affordable, and common to displace most current human driving tasks. To cope with these trends, autonomous vehicles require reliable perception systems to hear and see all the surroundings, being light detection and ranging (LiDAR) sensors a key instrument for recreating a 3D visualization of the world. However, for a reliable operation, such systems require LiDAR sensors to provide high-resolution 3D representations of the car’s vicinity, which results in millions of data points to be processed in real-time. With this article we propose the ALFA-Pi, a data packet decoder and reconstruction system fully deployed on an embedded reconfigurable hardware platform. By resorting to field-programmable gate array (FPGA) technology, ALFAPi is able to interface different LiDAR sensors at the same time, while providing custom representation outputs to high-level perception systems. By accelerating the LiDAR interface, the proposed system outperforms current software-only approaches, achieving lower latency in the data acquisition and data decoding tasks while reaching high performance ratios.(undefined)IEEEUniversidade do MinhoCunha, LuisRoriz, Ricardo João ReiPinto, SandroGomes, Tiago Manuel Ribeiro20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/81554engL. Cunha, R. Roriz, S. Pinto and T. Gomes, "Hardware-Accelerated Data Decoding and Reconstruction for Automotive LiDAR Sensors," in IEEE Transactions on Vehicular Technology, vol. 72, no. 4, pp. 4267-4276, April 2023, doi: 10.1109/TVT.2022.3223231.0018-95451939-935910.1109/TVT.2022.3223231https://ieeexplore.ieee.org/document/9954909info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:09:45Zoai:repositorium.sdum.uminho.pt:1822/81554Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:40:59.864393Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors |
title |
Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors |
spellingShingle |
Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors Cunha, Luis Autonomous vehicles LiDAR FPGA Data representation LiDAR point cloud Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Indústria, inovação e infraestruturas |
title_short |
Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors |
title_full |
Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors |
title_fullStr |
Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors |
title_full_unstemmed |
Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors |
title_sort |
Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors |
author |
Cunha, Luis |
author_facet |
Cunha, Luis Roriz, Ricardo João Rei Pinto, Sandro Gomes, Tiago Manuel Ribeiro |
author_role |
author |
author2 |
Roriz, Ricardo João Rei Pinto, Sandro Gomes, Tiago Manuel Ribeiro |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Cunha, Luis Roriz, Ricardo João Rei Pinto, Sandro Gomes, Tiago Manuel Ribeiro |
dc.subject.por.fl_str_mv |
Autonomous vehicles LiDAR FPGA Data representation LiDAR point cloud Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Indústria, inovação e infraestruturas |
topic |
Autonomous vehicles LiDAR FPGA Data representation LiDAR point cloud Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Indústria, inovação e infraestruturas |
description |
The automotive industry is facing an unprecedented technological transformation towards fully autonomous vehicles. Optimists predict that, by 2030, cars will be sufficiently reliable, affordable, and common to displace most current human driving tasks. To cope with these trends, autonomous vehicles require reliable perception systems to hear and see all the surroundings, being light detection and ranging (LiDAR) sensors a key instrument for recreating a 3D visualization of the world. However, for a reliable operation, such systems require LiDAR sensors to provide high-resolution 3D representations of the car’s vicinity, which results in millions of data points to be processed in real-time. With this article we propose the ALFA-Pi, a data packet decoder and reconstruction system fully deployed on an embedded reconfigurable hardware platform. By resorting to field-programmable gate array (FPGA) technology, ALFAPi is able to interface different LiDAR sensors at the same time, while providing custom representation outputs to high-level perception systems. By accelerating the LiDAR interface, the proposed system outperforms current software-only approaches, achieving lower latency in the data acquisition and data decoding tasks while reaching high performance ratios. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/81554 |
url |
https://hdl.handle.net/1822/81554 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
L. Cunha, R. Roriz, S. Pinto and T. Gomes, "Hardware-Accelerated Data Decoding and Reconstruction for Automotive LiDAR Sensors," in IEEE Transactions on Vehicular Technology, vol. 72, no. 4, pp. 4267-4276, April 2023, doi: 10.1109/TVT.2022.3223231. 0018-9545 1939-9359 10.1109/TVT.2022.3223231 https://ieeexplore.ieee.org/document/9954909 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594818478997504 |