Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors

Bibliographic Details
Main Author: Cunha, Luis
Publication Date: 2023
Other Authors: Roriz, Ricardo João Rei, Pinto, Sandro, Gomes, Tiago Manuel Ribeiro
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/81554
Summary: The automotive industry is facing an unprecedented technological transformation towards fully autonomous vehicles. Optimists predict that, by 2030, cars will be sufficiently reliable, affordable, and common to displace most current human driving tasks. To cope with these trends, autonomous vehicles require reliable perception systems to hear and see all the surroundings, being light detection and ranging (LiDAR) sensors a key instrument for recreating a 3D visualization of the world. However, for a reliable operation, such systems require LiDAR sensors to provide high-resolution 3D representations of the car’s vicinity, which results in millions of data points to be processed in real-time. With this article we propose the ALFA-Pi, a data packet decoder and reconstruction system fully deployed on an embedded reconfigurable hardware platform. By resorting to field-programmable gate array (FPGA) technology, ALFAPi is able to interface different LiDAR sensors at the same time, while providing custom representation outputs to high-level perception systems. By accelerating the LiDAR interface, the proposed system outperforms current software-only approaches, achieving lower latency in the data acquisition and data decoding tasks while reaching high performance ratios.
id RCAP_f385dc0f8d3a9a9b90246a64f45ad169
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/81554
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensorsAutonomous vehiclesLiDARFPGAData representationLiDAR point cloudEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaIndústria, inovação e infraestruturasThe automotive industry is facing an unprecedented technological transformation towards fully autonomous vehicles. Optimists predict that, by 2030, cars will be sufficiently reliable, affordable, and common to displace most current human driving tasks. To cope with these trends, autonomous vehicles require reliable perception systems to hear and see all the surroundings, being light detection and ranging (LiDAR) sensors a key instrument for recreating a 3D visualization of the world. However, for a reliable operation, such systems require LiDAR sensors to provide high-resolution 3D representations of the car’s vicinity, which results in millions of data points to be processed in real-time. With this article we propose the ALFA-Pi, a data packet decoder and reconstruction system fully deployed on an embedded reconfigurable hardware platform. By resorting to field-programmable gate array (FPGA) technology, ALFAPi is able to interface different LiDAR sensors at the same time, while providing custom representation outputs to high-level perception systems. By accelerating the LiDAR interface, the proposed system outperforms current software-only approaches, achieving lower latency in the data acquisition and data decoding tasks while reaching high performance ratios.(undefined)IEEEUniversidade do MinhoCunha, LuisRoriz, Ricardo João ReiPinto, SandroGomes, Tiago Manuel Ribeiro20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/81554engL. Cunha, R. Roriz, S. Pinto and T. Gomes, "Hardware-Accelerated Data Decoding and Reconstruction for Automotive LiDAR Sensors," in IEEE Transactions on Vehicular Technology, vol. 72, no. 4, pp. 4267-4276, April 2023, doi: 10.1109/TVT.2022.3223231.0018-95451939-935910.1109/TVT.2022.3223231https://ieeexplore.ieee.org/document/9954909info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:09:45Zoai:repositorium.sdum.uminho.pt:1822/81554Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:40:59.864393Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors
title Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors
spellingShingle Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors
Cunha, Luis
Autonomous vehicles
LiDAR
FPGA
Data representation
LiDAR point cloud
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
Indústria, inovação e infraestruturas
title_short Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors
title_full Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors
title_fullStr Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors
title_full_unstemmed Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors
title_sort Hardware-accelerated data decoding and reconstruction for automotive LiDAR sensors
author Cunha, Luis
author_facet Cunha, Luis
Roriz, Ricardo João Rei
Pinto, Sandro
Gomes, Tiago Manuel Ribeiro
author_role author
author2 Roriz, Ricardo João Rei
Pinto, Sandro
Gomes, Tiago Manuel Ribeiro
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Cunha, Luis
Roriz, Ricardo João Rei
Pinto, Sandro
Gomes, Tiago Manuel Ribeiro
dc.subject.por.fl_str_mv Autonomous vehicles
LiDAR
FPGA
Data representation
LiDAR point cloud
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
Indústria, inovação e infraestruturas
topic Autonomous vehicles
LiDAR
FPGA
Data representation
LiDAR point cloud
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
Indústria, inovação e infraestruturas
description The automotive industry is facing an unprecedented technological transformation towards fully autonomous vehicles. Optimists predict that, by 2030, cars will be sufficiently reliable, affordable, and common to displace most current human driving tasks. To cope with these trends, autonomous vehicles require reliable perception systems to hear and see all the surroundings, being light detection and ranging (LiDAR) sensors a key instrument for recreating a 3D visualization of the world. However, for a reliable operation, such systems require LiDAR sensors to provide high-resolution 3D representations of the car’s vicinity, which results in millions of data points to be processed in real-time. With this article we propose the ALFA-Pi, a data packet decoder and reconstruction system fully deployed on an embedded reconfigurable hardware platform. By resorting to field-programmable gate array (FPGA) technology, ALFAPi is able to interface different LiDAR sensors at the same time, while providing custom representation outputs to high-level perception systems. By accelerating the LiDAR interface, the proposed system outperforms current software-only approaches, achieving lower latency in the data acquisition and data decoding tasks while reaching high performance ratios.
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/81554
url https://hdl.handle.net/1822/81554
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv L. Cunha, R. Roriz, S. Pinto and T. Gomes, "Hardware-Accelerated Data Decoding and Reconstruction for Automotive LiDAR Sensors," in IEEE Transactions on Vehicular Technology, vol. 72, no. 4, pp. 4267-4276, April 2023, doi: 10.1109/TVT.2022.3223231.
0018-9545
1939-9359
10.1109/TVT.2022.3223231
https://ieeexplore.ieee.org/document/9954909
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594818478997504