Optimality criteria without constraint qualications for linear semidenite problems

Bibliographic Details
Main Author: Kostyukova, O. I.
Publication Date: 2012
Other Authors: Tchemisova, T. V.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/8433
Summary: We consider two closely related optimization problems: a problem of convex Semi- Infinite Programming with multidimensional index set and a linear problem of Semidefinite Programming. In study of these problems we apply the approach suggested in our recent paper [14] and based on the notions of immobile indices and their immobility orders. For the linear semidefinite problem, we define the subspace of immobile indices and formulate the first order optimality conditions in terms of a basic matrix of this subspace. These conditions are explicit, do not use constraint qualifications, and have the form of criterion. An algorithm determining a basis of the subspace of immobile indices in a finite number of steps is suggested. The optimality conditions obtained are compared with other known optimality conditions.
id RCAP_f155fd0ff23af9d0550e5d22dab0c9c6
oai_identifier_str oai:ria.ua.pt:10773/8433
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Optimality criteria without constraint qualications for linear semidenite problemsSemi-Infinite Programming (SIP)Semidefinite Programming (SDP)Subspace of immobile indicesConstraint Qualification (CQ)Optimality conditionsWe consider two closely related optimization problems: a problem of convex Semi- Infinite Programming with multidimensional index set and a linear problem of Semidefinite Programming. In study of these problems we apply the approach suggested in our recent paper [14] and based on the notions of immobile indices and their immobility orders. For the linear semidefinite problem, we define the subspace of immobile indices and formulate the first order optimality conditions in terms of a basic matrix of this subspace. These conditions are explicit, do not use constraint qualifications, and have the form of criterion. An algorithm determining a basis of the subspace of immobile indices in a finite number of steps is suggested. The optimality conditions obtained are compared with other known optimality conditions.Springer Verlag2013-07-05T13:49:39Z2012-04-30T00:00:00Z2012-04-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/8433eng1072-337410.1007/s10958-012-0734-2Kostyukova, O. I.Tchemisova, T. V.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:39:29Zoai:ria.ua.pt:10773/8433Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:42:20.755552Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Optimality criteria without constraint qualications for linear semidenite problems
title Optimality criteria without constraint qualications for linear semidenite problems
spellingShingle Optimality criteria without constraint qualications for linear semidenite problems
Kostyukova, O. I.
Semi-Infinite Programming (SIP)
Semidefinite Programming (SDP)
Subspace of immobile indices
Constraint Qualification (CQ)
Optimality conditions
title_short Optimality criteria without constraint qualications for linear semidenite problems
title_full Optimality criteria without constraint qualications for linear semidenite problems
title_fullStr Optimality criteria without constraint qualications for linear semidenite problems
title_full_unstemmed Optimality criteria without constraint qualications for linear semidenite problems
title_sort Optimality criteria without constraint qualications for linear semidenite problems
author Kostyukova, O. I.
author_facet Kostyukova, O. I.
Tchemisova, T. V.
author_role author
author2 Tchemisova, T. V.
author2_role author
dc.contributor.author.fl_str_mv Kostyukova, O. I.
Tchemisova, T. V.
dc.subject.por.fl_str_mv Semi-Infinite Programming (SIP)
Semidefinite Programming (SDP)
Subspace of immobile indices
Constraint Qualification (CQ)
Optimality conditions
topic Semi-Infinite Programming (SIP)
Semidefinite Programming (SDP)
Subspace of immobile indices
Constraint Qualification (CQ)
Optimality conditions
description We consider two closely related optimization problems: a problem of convex Semi- Infinite Programming with multidimensional index set and a linear problem of Semidefinite Programming. In study of these problems we apply the approach suggested in our recent paper [14] and based on the notions of immobile indices and their immobility orders. For the linear semidefinite problem, we define the subspace of immobile indices and formulate the first order optimality conditions in terms of a basic matrix of this subspace. These conditions are explicit, do not use constraint qualifications, and have the form of criterion. An algorithm determining a basis of the subspace of immobile indices in a finite number of steps is suggested. The optimality conditions obtained are compared with other known optimality conditions.
publishDate 2012
dc.date.none.fl_str_mv 2012-04-30T00:00:00Z
2012-04-30
2013-07-05T13:49:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/8433
url http://hdl.handle.net/10773/8433
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1072-3374
10.1007/s10958-012-0734-2
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833593993508683776