Optimality criteria without constraint qualications for linear semidenite problems
Main Author: | |
---|---|
Publication Date: | 2012 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/8433 |
Summary: | We consider two closely related optimization problems: a problem of convex Semi- Infinite Programming with multidimensional index set and a linear problem of Semidefinite Programming. In study of these problems we apply the approach suggested in our recent paper [14] and based on the notions of immobile indices and their immobility orders. For the linear semidefinite problem, we define the subspace of immobile indices and formulate the first order optimality conditions in terms of a basic matrix of this subspace. These conditions are explicit, do not use constraint qualifications, and have the form of criterion. An algorithm determining a basis of the subspace of immobile indices in a finite number of steps is suggested. The optimality conditions obtained are compared with other known optimality conditions. |
id |
RCAP_f155fd0ff23af9d0550e5d22dab0c9c6 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/8433 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Optimality criteria without constraint qualications for linear semidenite problemsSemi-Infinite Programming (SIP)Semidefinite Programming (SDP)Subspace of immobile indicesConstraint Qualification (CQ)Optimality conditionsWe consider two closely related optimization problems: a problem of convex Semi- Infinite Programming with multidimensional index set and a linear problem of Semidefinite Programming. In study of these problems we apply the approach suggested in our recent paper [14] and based on the notions of immobile indices and their immobility orders. For the linear semidefinite problem, we define the subspace of immobile indices and formulate the first order optimality conditions in terms of a basic matrix of this subspace. These conditions are explicit, do not use constraint qualifications, and have the form of criterion. An algorithm determining a basis of the subspace of immobile indices in a finite number of steps is suggested. The optimality conditions obtained are compared with other known optimality conditions.Springer Verlag2013-07-05T13:49:39Z2012-04-30T00:00:00Z2012-04-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/8433eng1072-337410.1007/s10958-012-0734-2Kostyukova, O. I.Tchemisova, T. V.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:39:29Zoai:ria.ua.pt:10773/8433Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:42:20.755552Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Optimality criteria without constraint qualications for linear semidenite problems |
title |
Optimality criteria without constraint qualications for linear semidenite problems |
spellingShingle |
Optimality criteria without constraint qualications for linear semidenite problems Kostyukova, O. I. Semi-Infinite Programming (SIP) Semidefinite Programming (SDP) Subspace of immobile indices Constraint Qualification (CQ) Optimality conditions |
title_short |
Optimality criteria without constraint qualications for linear semidenite problems |
title_full |
Optimality criteria without constraint qualications for linear semidenite problems |
title_fullStr |
Optimality criteria without constraint qualications for linear semidenite problems |
title_full_unstemmed |
Optimality criteria without constraint qualications for linear semidenite problems |
title_sort |
Optimality criteria without constraint qualications for linear semidenite problems |
author |
Kostyukova, O. I. |
author_facet |
Kostyukova, O. I. Tchemisova, T. V. |
author_role |
author |
author2 |
Tchemisova, T. V. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Kostyukova, O. I. Tchemisova, T. V. |
dc.subject.por.fl_str_mv |
Semi-Infinite Programming (SIP) Semidefinite Programming (SDP) Subspace of immobile indices Constraint Qualification (CQ) Optimality conditions |
topic |
Semi-Infinite Programming (SIP) Semidefinite Programming (SDP) Subspace of immobile indices Constraint Qualification (CQ) Optimality conditions |
description |
We consider two closely related optimization problems: a problem of convex Semi- Infinite Programming with multidimensional index set and a linear problem of Semidefinite Programming. In study of these problems we apply the approach suggested in our recent paper [14] and based on the notions of immobile indices and their immobility orders. For the linear semidefinite problem, we define the subspace of immobile indices and formulate the first order optimality conditions in terms of a basic matrix of this subspace. These conditions are explicit, do not use constraint qualifications, and have the form of criterion. An algorithm determining a basis of the subspace of immobile indices in a finite number of steps is suggested. The optimality conditions obtained are compared with other known optimality conditions. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04-30T00:00:00Z 2012-04-30 2013-07-05T13:49:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/8433 |
url |
http://hdl.handle.net/10773/8433 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1072-3374 10.1007/s10958-012-0734-2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833593993508683776 |