Region-based clustering for lung segmentation in low-dose CT images
Main Author: | |
---|---|
Publication Date: | 2010 |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10198/2631 |
Summary: | Lung segmentation in thoracic computed tomography scans is essential for the development of computer-aided diagnostic methods for identifying the lung diseases. Low-dose CT scans are increasingly utilized in lung studies, but segmenting them with traditional threshold segmentation algorithms often yields less than satisfying results. In this paper we present a hybrid framework to lung segmentation which joints region-based information based on watershed transform with clustering techniques. The proposed method eliminates the task of finding an optimal threshold and the over-segmentation produced by watershed. We have applied our approach on several pulmonary low-dose CT images and the results reveal the robustness and accuracy of this method. |
id |
RCAP_ecb9588bcc480ece2c026e4ac20de5a3 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/2631 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Region-based clustering for lung segmentation in low-dose CT imagesLung segmentationGraph clusteringWatershed transformPulmonary CT imageLung segmentation in thoracic computed tomography scans is essential for the development of computer-aided diagnostic methods for identifying the lung diseases. Low-dose CT scans are increasingly utilized in lung studies, but segmenting them with traditional threshold segmentation algorithms often yields less than satisfying results. In this paper we present a hybrid framework to lung segmentation which joints region-based information based on watershed transform with clustering techniques. The proposed method eliminates the task of finding an optimal threshold and the over-segmentation produced by watershed. We have applied our approach on several pulmonary low-dose CT images and the results reveal the robustness and accuracy of this method.FCT - Fundação para a Ciência e TecnologiaTheodore E. Simos, George Psihoyios, Ch. TsitourasBiblioteca Digital do IPBMonteiro, Fernando C.2010-10-06T13:17:14Z20102010-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/2631engMonteiro, Fernando C. (2010). Region-based clustering for lung segmentation in low-dose CT images. In CNAAM: International Conference of Numerical Analysis and Applied Mathematics. Rhodes, Greece. ISBN 978-0-7354-0834-0. p.2061-2064.978-0-7354-0834-010.1063/1.3498413info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T11:55:49Zoai:bibliotecadigital.ipb.pt:10198/2631Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:17:28.300509Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Region-based clustering for lung segmentation in low-dose CT images |
title |
Region-based clustering for lung segmentation in low-dose CT images |
spellingShingle |
Region-based clustering for lung segmentation in low-dose CT images Monteiro, Fernando C. Lung segmentation Graph clustering Watershed transform Pulmonary CT image |
title_short |
Region-based clustering for lung segmentation in low-dose CT images |
title_full |
Region-based clustering for lung segmentation in low-dose CT images |
title_fullStr |
Region-based clustering for lung segmentation in low-dose CT images |
title_full_unstemmed |
Region-based clustering for lung segmentation in low-dose CT images |
title_sort |
Region-based clustering for lung segmentation in low-dose CT images |
author |
Monteiro, Fernando C. |
author_facet |
Monteiro, Fernando C. |
author_role |
author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Monteiro, Fernando C. |
dc.subject.por.fl_str_mv |
Lung segmentation Graph clustering Watershed transform Pulmonary CT image |
topic |
Lung segmentation Graph clustering Watershed transform Pulmonary CT image |
description |
Lung segmentation in thoracic computed tomography scans is essential for the development of computer-aided diagnostic methods for identifying the lung diseases. Low-dose CT scans are increasingly utilized in lung studies, but segmenting them with traditional threshold segmentation algorithms often yields less than satisfying results. In this paper we present a hybrid framework to lung segmentation which joints region-based information based on watershed transform with clustering techniques. The proposed method eliminates the task of finding an optimal threshold and the over-segmentation produced by watershed. We have applied our approach on several pulmonary low-dose CT images and the results reveal the robustness and accuracy of this method. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-10-06T13:17:14Z 2010 2010-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/2631 |
url |
http://hdl.handle.net/10198/2631 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Monteiro, Fernando C. (2010). Region-based clustering for lung segmentation in low-dose CT images. In CNAAM: International Conference of Numerical Analysis and Applied Mathematics. Rhodes, Greece. ISBN 978-0-7354-0834-0. p.2061-2064. 978-0-7354-0834-0 10.1063/1.3498413 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Theodore E. Simos, George Psihoyios, Ch. Tsitouras |
publisher.none.fl_str_mv |
Theodore E. Simos, George Psihoyios, Ch. Tsitouras |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833591769736937472 |