Region-based clustering for lung segmentation in low-dose CT images

Bibliographic Details
Main Author: Monteiro, Fernando C.
Publication Date: 2010
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10198/2631
Summary: Lung segmentation in thoracic computed tomography scans is essential for the development of computer-aided diagnostic methods for identifying the lung diseases. Low-dose CT scans are increasingly utilized in lung studies, but segmenting them with traditional threshold segmentation algorithms often yields less than satisfying results. In this paper we present a hybrid framework to lung segmentation which joints region-based information based on watershed transform with clustering techniques. The proposed method eliminates the task of finding an optimal threshold and the over-segmentation produced by watershed. We have applied our approach on several pulmonary low-dose CT images and the results reveal the robustness and accuracy of this method.
id RCAP_ecb9588bcc480ece2c026e4ac20de5a3
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/2631
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Region-based clustering for lung segmentation in low-dose CT imagesLung segmentationGraph clusteringWatershed transformPulmonary CT imageLung segmentation in thoracic computed tomography scans is essential for the development of computer-aided diagnostic methods for identifying the lung diseases. Low-dose CT scans are increasingly utilized in lung studies, but segmenting them with traditional threshold segmentation algorithms often yields less than satisfying results. In this paper we present a hybrid framework to lung segmentation which joints region-based information based on watershed transform with clustering techniques. The proposed method eliminates the task of finding an optimal threshold and the over-segmentation produced by watershed. We have applied our approach on several pulmonary low-dose CT images and the results reveal the robustness and accuracy of this method.FCT - Fundação para a Ciência e TecnologiaTheodore E. Simos, George Psihoyios, Ch. TsitourasBiblioteca Digital do IPBMonteiro, Fernando C.2010-10-06T13:17:14Z20102010-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/2631engMonteiro, Fernando C. (2010). Region-based clustering for lung segmentation in low-dose CT images. In CNAAM: International Conference of Numerical Analysis and Applied Mathematics. Rhodes, Greece. ISBN 978-0-7354-0834-0. p.2061-2064.978-0-7354-0834-010.1063/1.3498413info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T11:55:49Zoai:bibliotecadigital.ipb.pt:10198/2631Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:17:28.300509Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Region-based clustering for lung segmentation in low-dose CT images
title Region-based clustering for lung segmentation in low-dose CT images
spellingShingle Region-based clustering for lung segmentation in low-dose CT images
Monteiro, Fernando C.
Lung segmentation
Graph clustering
Watershed transform
Pulmonary CT image
title_short Region-based clustering for lung segmentation in low-dose CT images
title_full Region-based clustering for lung segmentation in low-dose CT images
title_fullStr Region-based clustering for lung segmentation in low-dose CT images
title_full_unstemmed Region-based clustering for lung segmentation in low-dose CT images
title_sort Region-based clustering for lung segmentation in low-dose CT images
author Monteiro, Fernando C.
author_facet Monteiro, Fernando C.
author_role author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Monteiro, Fernando C.
dc.subject.por.fl_str_mv Lung segmentation
Graph clustering
Watershed transform
Pulmonary CT image
topic Lung segmentation
Graph clustering
Watershed transform
Pulmonary CT image
description Lung segmentation in thoracic computed tomography scans is essential for the development of computer-aided diagnostic methods for identifying the lung diseases. Low-dose CT scans are increasingly utilized in lung studies, but segmenting them with traditional threshold segmentation algorithms often yields less than satisfying results. In this paper we present a hybrid framework to lung segmentation which joints region-based information based on watershed transform with clustering techniques. The proposed method eliminates the task of finding an optimal threshold and the over-segmentation produced by watershed. We have applied our approach on several pulmonary low-dose CT images and the results reveal the robustness and accuracy of this method.
publishDate 2010
dc.date.none.fl_str_mv 2010-10-06T13:17:14Z
2010
2010-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/2631
url http://hdl.handle.net/10198/2631
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Monteiro, Fernando C. (2010). Region-based clustering for lung segmentation in low-dose CT images. In CNAAM: International Conference of Numerical Analysis and Applied Mathematics. Rhodes, Greece. ISBN 978-0-7354-0834-0. p.2061-2064.
978-0-7354-0834-0
10.1063/1.3498413
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Theodore E. Simos, George Psihoyios, Ch. Tsitouras
publisher.none.fl_str_mv Theodore E. Simos, George Psihoyios, Ch. Tsitouras
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833591769736937472