GM4OS
| Main Author: | |
|---|---|
| Publication Date: | 2024 |
| Other Authors: | |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10362/165599 |
Summary: | Farinati, D., & Vanneschi, L. (2024). GM4OS: An Evolutionary Oversampling Approach for Imbalanced Binary Classification Tasks. In S. Smith, J. Correia, & C. Cintrano (Eds.), Applications of Evolutionary Computation: 27th European Conference, EvoApplications 2024, Held as Part of EvoStar 2024, Aberystwyth, UK, April 3–5, 2024, Proceedings, Part I (Vol. 1, pp. 68-82). (Lecture Notes in Computer Science; Vol. 14634). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-56852-7_5 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. |
| id |
RCAP_ebff24a17c1c01fae0ce4439a4d042a1 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/165599 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
GM4OSAn Evolutionary Oversampling Approach for Imbalanced Binary Classification TasksOversamplingImbalanced DataBinary ClassificationGenetic ProgrammingGenetic AlgorithmsTheoretical Computer ScienceComputer Science(all)Farinati, D., & Vanneschi, L. (2024). GM4OS: An Evolutionary Oversampling Approach for Imbalanced Binary Classification Tasks. In S. Smith, J. Correia, & C. Cintrano (Eds.), Applications of Evolutionary Computation: 27th European Conference, EvoApplications 2024, Held as Part of EvoStar 2024, Aberystwyth, UK, April 3–5, 2024, Proceedings, Part I (Vol. 1, pp. 68-82). (Lecture Notes in Computer Science; Vol. 14634). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-56852-7_5 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.Imbalanced datasets pose a significant and longstanding challenge to machine learning algorithms, particularly in binary classification tasks. Over the past few years, various solutions have emerged, with a substantial focus on the automated generation of synthetic observations for the minority class, a technique known as oversampling. Among the various oversampling approaches, the Synthetic Minority Oversampling Technique (SMOTE) has recently garnered considerable attention as a highly promising method. SMOTE achieves this by generating new observations through the creation of points along the line segment connecting two existing minority class observations. Nevertheless, the performance of SMOTE frequently hinges upon the specific selection of these observation pairs for resampling. This research introduces the Genetic Methods for OverSampling (GM4OS), a novel oversampling technique that addresses this challenge. In GM4OS, individuals are represented as pairs of objects. The first object assumes the form of a GP-like function, operating on vectors, while the second object adopts a GA-like genome structure containing pairs of minority class observations. By co-evolving these two elements, GM4OS conducts a simultaneous search for the most suitable resampling pair and the most effective oversampling function. Experimental results, obtained on ten imbalanced binary classification problems, demonstrate that GM4OS consistently outperforms or yields results that are at least comparable to those achieved through linear regression and linear regression when combined with SMOTE.Springer Nature Switzerland AGInformation Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNFarinati, DavideVanneschi, Leonardo2025-03-22T01:33:33Z2024-04-212024-04-21T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion15application/pdfhttp://hdl.handle.net/10362/165599eng978-3-031-56851-00302-9743PURE: 86465388https://doi.org/10.1007/978-3-031-56852-7_5info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-31T01:52:11Zoai:run.unl.pt:10362/165599Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:50:49.099655Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
GM4OS An Evolutionary Oversampling Approach for Imbalanced Binary Classification Tasks |
| title |
GM4OS |
| spellingShingle |
GM4OS Farinati, Davide Oversampling Imbalanced Data Binary Classification Genetic Programming Genetic Algorithms Theoretical Computer Science Computer Science(all) |
| title_short |
GM4OS |
| title_full |
GM4OS |
| title_fullStr |
GM4OS |
| title_full_unstemmed |
GM4OS |
| title_sort |
GM4OS |
| author |
Farinati, Davide |
| author_facet |
Farinati, Davide Vanneschi, Leonardo |
| author_role |
author |
| author2 |
Vanneschi, Leonardo |
| author2_role |
author |
| dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
| dc.contributor.author.fl_str_mv |
Farinati, Davide Vanneschi, Leonardo |
| dc.subject.por.fl_str_mv |
Oversampling Imbalanced Data Binary Classification Genetic Programming Genetic Algorithms Theoretical Computer Science Computer Science(all) |
| topic |
Oversampling Imbalanced Data Binary Classification Genetic Programming Genetic Algorithms Theoretical Computer Science Computer Science(all) |
| description |
Farinati, D., & Vanneschi, L. (2024). GM4OS: An Evolutionary Oversampling Approach for Imbalanced Binary Classification Tasks. In S. Smith, J. Correia, & C. Cintrano (Eds.), Applications of Evolutionary Computation: 27th European Conference, EvoApplications 2024, Held as Part of EvoStar 2024, Aberystwyth, UK, April 3–5, 2024, Proceedings, Part I (Vol. 1, pp. 68-82). (Lecture Notes in Computer Science; Vol. 14634). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-56852-7_5 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-04-21 2024-04-21T00:00:00Z 2025-03-22T01:33:33Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/165599 |
| url |
http://hdl.handle.net/10362/165599 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-3-031-56851-0 0302-9743 PURE: 86465388 https://doi.org/10.1007/978-3-031-56852-7_5 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
15 application/pdf |
| dc.publisher.none.fl_str_mv |
Springer Nature Switzerland AG |
| publisher.none.fl_str_mv |
Springer Nature Switzerland AG |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597007544975360 |