Exploring the Impact of Data Scale on Mutation Step Size in SLIM-GSGP
Main Author: | |
---|---|
Publication Date: | 2025 |
Other Authors: | , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/182852 |
Summary: | Farinati, D., Pietropolli, G., & Vanneschi, L. (2025). Exploring the Impact of Data Scale on Mutation Step Size in SLIM-GSGP. In B. Xue, L. Manzoni, & I. Bakurov (Eds.), Genetic Programming: 28th European Conference, EuroGP 2025, Held as Part of EvoStar 2025, Trieste, Italy, April 23–25, 2025, Proceedings (pp. 35-51). (Lecture Notes in Computer Science; Vol. 15609). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-89991-1_3 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS (https://doi.org/10.54499/UIDB/04152/2020). |
id |
RCAP_84a0841cb5128cb2ddec0f9146425c8f |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/182852 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Exploring the Impact of Data Scale on Mutation Step Size in SLIM-GSGPGenetic ProgrammingGeometric Semantic Genetic ProgrammingGeometric MutationMutation StepSymbolic RegressionTheoretical Computer ScienceComputer Science(all)Farinati, D., Pietropolli, G., & Vanneschi, L. (2025). Exploring the Impact of Data Scale on Mutation Step Size in SLIM-GSGP. In B. Xue, L. Manzoni, & I. Bakurov (Eds.), Genetic Programming: 28th European Conference, EuroGP 2025, Held as Part of EvoStar 2025, Trieste, Italy, April 23–25, 2025, Proceedings (pp. 35-51). (Lecture Notes in Computer Science; Vol. 15609). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-89991-1_3 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS (https://doi.org/10.54499/UIDB/04152/2020).The Semantic Learning algorithm based on Inflate and deflate Mutation (SLIM) is a promising recent variant of Geometric Semantic Genetic Programming (GSGP) that introduces a new Deflate Geometric Semantic Mutation (DGSM). This operator maintains the key feature of the standard Geometric Semantic Mutation (GSM), inducing a unimodal error surface for any supervised learning problem, while generating smaller offspring than their parents, and thus allowing SLIM to generate compact, and potentially interpretable, final solutions. A key parameter controlling the evolution process in both GSGP and SLIM is the Mutation Step (MS), which regulates the extent of perturbation to the parent semantics. While it is intuitive that the optimal value of MS has a relationship with the scale of the dataset features, to the best of our knowledge no prior research has extensively explored this relationship. In this work, we provide the first comprehensive investigation into this topic. First, we hypothesize a general rule by analyzing results from artificial datasets, and then we confirm these findings with more complex, real-world datasets. This approach offers a solid alternative to the typical hyperparameter tuning approach.Springer Nature Switzerland AGNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNFarinati, DavidePietropolli, GloriaVanneschi, Leonardo2025-04-222026-04-18T00:00:00Z2025-04-22T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion17application/pdfhttp://hdl.handle.net/10362/182852eng978-3-031-89990-40302-9743PURE: 115881088https://doi.org/10.1007/978-3-031-89991-1_3info:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-19T01:40:13Zoai:run.unl.pt:10362/182852Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T07:14:12.809319Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Exploring the Impact of Data Scale on Mutation Step Size in SLIM-GSGP |
title |
Exploring the Impact of Data Scale on Mutation Step Size in SLIM-GSGP |
spellingShingle |
Exploring the Impact of Data Scale on Mutation Step Size in SLIM-GSGP Farinati, Davide Genetic Programming Geometric Semantic Genetic Programming Geometric Mutation Mutation Step Symbolic Regression Theoretical Computer Science Computer Science(all) |
title_short |
Exploring the Impact of Data Scale on Mutation Step Size in SLIM-GSGP |
title_full |
Exploring the Impact of Data Scale on Mutation Step Size in SLIM-GSGP |
title_fullStr |
Exploring the Impact of Data Scale on Mutation Step Size in SLIM-GSGP |
title_full_unstemmed |
Exploring the Impact of Data Scale on Mutation Step Size in SLIM-GSGP |
title_sort |
Exploring the Impact of Data Scale on Mutation Step Size in SLIM-GSGP |
author |
Farinati, Davide |
author_facet |
Farinati, Davide Pietropolli, Gloria Vanneschi, Leonardo |
author_role |
author |
author2 |
Pietropolli, Gloria Vanneschi, Leonardo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Farinati, Davide Pietropolli, Gloria Vanneschi, Leonardo |
dc.subject.por.fl_str_mv |
Genetic Programming Geometric Semantic Genetic Programming Geometric Mutation Mutation Step Symbolic Regression Theoretical Computer Science Computer Science(all) |
topic |
Genetic Programming Geometric Semantic Genetic Programming Geometric Mutation Mutation Step Symbolic Regression Theoretical Computer Science Computer Science(all) |
description |
Farinati, D., Pietropolli, G., & Vanneschi, L. (2025). Exploring the Impact of Data Scale on Mutation Step Size in SLIM-GSGP. In B. Xue, L. Manzoni, & I. Bakurov (Eds.), Genetic Programming: 28th European Conference, EuroGP 2025, Held as Part of EvoStar 2025, Trieste, Italy, April 23–25, 2025, Proceedings (pp. 35-51). (Lecture Notes in Computer Science; Vol. 15609). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-89991-1_3 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS (https://doi.org/10.54499/UIDB/04152/2020). |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-04-22 2025-04-22T00:00:00Z 2026-04-18T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/182852 |
url |
http://hdl.handle.net/10362/182852 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-3-031-89990-4 0302-9743 PURE: 115881088 https://doi.org/10.1007/978-3-031-89991-1_3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
17 application/pdf |
dc.publisher.none.fl_str_mv |
Springer Nature Switzerland AG |
publisher.none.fl_str_mv |
Springer Nature Switzerland AG |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602925665976320 |