On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws

Bibliographic Details
Main Author: Hall, A.
Publication Date: 2007
Other Authors: Temido, M. G.
Format: Other
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/11287
Summary: In this work we study the limiting distribution of the maximum term of periodic integer-valued sequences with marginal distribution belonging to a particular class where the tail decays exponentially. This class does not belong to the domain of attraction of any max-stable distribution. Nevertheless, we prove that the limiting distribution is max-semistable when we consider the maximum of the first kn observations, for a suitable sequence {kn} increasing to infinity. We obtain an expression for calculating the extremal index of sequences satisfying certain local conditions similar to conditions D(m)(un), m ∈ N, defined by Chernick et al. (1991). We apply the results to a class of max-autoregressive sequences and a class of moving average models. The results generalize the ones obtained for the stationary case.
id RCAP_e9472f21f86eaaff98f3f0af49f8a24d
oai_identifier_str oai:estudogeral.uc.pt:10316/11287
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable lawsInteger-valued periodic sequencesMax-semistable lawsBinomial thinningIn this work we study the limiting distribution of the maximum term of periodic integer-valued sequences with marginal distribution belonging to a particular class where the tail decays exponentially. This class does not belong to the domain of attraction of any max-stable distribution. Nevertheless, we prove that the limiting distribution is max-semistable when we consider the maximum of the first kn observations, for a suitable sequence {kn} increasing to infinity. We obtain an expression for calculating the extremal index of sequences satisfying certain local conditions similar to conditions D(m)(un), m ∈ N, defined by Chernick et al. (1991). We apply the results to a class of max-autoregressive sequences and a class of moving average models. The results generalize the ones obtained for the stationary case.FCT; Unidade de Investigação Matemática e Aplicações of University of Aveiro; Center for Mathematics of University of CoimbraCentro de Matemática da Universidade de Coimbra2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://hdl.handle.net/10316/11287https://hdl.handle.net/10316/11287engPré-Publicações DMUC. 07-31 (2007)Hall, A.Temido, M. G.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2021-11-04T09:06:56Zoai:estudogeral.uc.pt:10316/11287Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:20.510142Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws
title On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws
spellingShingle On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws
Hall, A.
Integer-valued periodic sequences
Max-semistable laws
Binomial thinning
title_short On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws
title_full On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws
title_fullStr On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws
title_full_unstemmed On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws
title_sort On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws
author Hall, A.
author_facet Hall, A.
Temido, M. G.
author_role author
author2 Temido, M. G.
author2_role author
dc.contributor.author.fl_str_mv Hall, A.
Temido, M. G.
dc.subject.por.fl_str_mv Integer-valued periodic sequences
Max-semistable laws
Binomial thinning
topic Integer-valued periodic sequences
Max-semistable laws
Binomial thinning
description In this work we study the limiting distribution of the maximum term of periodic integer-valued sequences with marginal distribution belonging to a particular class where the tail decays exponentially. This class does not belong to the domain of attraction of any max-stable distribution. Nevertheless, we prove that the limiting distribution is max-semistable when we consider the maximum of the first kn observations, for a suitable sequence {kn} increasing to infinity. We obtain an expression for calculating the extremal index of sequences satisfying certain local conditions similar to conditions D(m)(un), m ∈ N, defined by Chernick et al. (1991). We apply the results to a class of max-autoregressive sequences and a class of moving average models. The results generalize the ones obtained for the stationary case.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/11287
https://hdl.handle.net/10316/11287
url https://hdl.handle.net/10316/11287
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pré-Publicações DMUC. 07-31 (2007)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602338962538496