On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Outros |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | https://hdl.handle.net/10316/11287 |
Resumo: | In this work we study the limiting distribution of the maximum term of periodic integer-valued sequences with marginal distribution belonging to a particular class where the tail decays exponentially. This class does not belong to the domain of attraction of any max-stable distribution. Nevertheless, we prove that the limiting distribution is max-semistable when we consider the maximum of the first kn observations, for a suitable sequence {kn} increasing to infinity. We obtain an expression for calculating the extremal index of sequences satisfying certain local conditions similar to conditions D(m)(un), m ∈ N, defined by Chernick et al. (1991). We apply the results to a class of max-autoregressive sequences and a class of moving average models. The results generalize the ones obtained for the stationary case. |
id |
RCAP_e9472f21f86eaaff98f3f0af49f8a24d |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/11287 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable lawsInteger-valued periodic sequencesMax-semistable lawsBinomial thinningIn this work we study the limiting distribution of the maximum term of periodic integer-valued sequences with marginal distribution belonging to a particular class where the tail decays exponentially. This class does not belong to the domain of attraction of any max-stable distribution. Nevertheless, we prove that the limiting distribution is max-semistable when we consider the maximum of the first kn observations, for a suitable sequence {kn} increasing to infinity. We obtain an expression for calculating the extremal index of sequences satisfying certain local conditions similar to conditions D(m)(un), m ∈ N, defined by Chernick et al. (1991). We apply the results to a class of max-autoregressive sequences and a class of moving average models. The results generalize the ones obtained for the stationary case.FCT; Unidade de Investigação Matemática e Aplicações of University of Aveiro; Center for Mathematics of University of CoimbraCentro de Matemática da Universidade de Coimbra2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://hdl.handle.net/10316/11287https://hdl.handle.net/10316/11287engPré-Publicações DMUC. 07-31 (2007)Hall, A.Temido, M. G.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2021-11-04T09:06:56Zoai:estudogeral.uc.pt:10316/11287Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:20.510142Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws |
title |
On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws |
spellingShingle |
On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws Hall, A. Integer-valued periodic sequences Max-semistable laws Binomial thinning |
title_short |
On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws |
title_full |
On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws |
title_fullStr |
On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws |
title_full_unstemmed |
On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws |
title_sort |
On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws |
author |
Hall, A. |
author_facet |
Hall, A. Temido, M. G. |
author_role |
author |
author2 |
Temido, M. G. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Hall, A. Temido, M. G. |
dc.subject.por.fl_str_mv |
Integer-valued periodic sequences Max-semistable laws Binomial thinning |
topic |
Integer-valued periodic sequences Max-semistable laws Binomial thinning |
description |
In this work we study the limiting distribution of the maximum term of periodic integer-valued sequences with marginal distribution belonging to a particular class where the tail decays exponentially. This class does not belong to the domain of attraction of any max-stable distribution. Nevertheless, we prove that the limiting distribution is max-semistable when we consider the maximum of the first kn observations, for a suitable sequence {kn} increasing to infinity. We obtain an expression for calculating the extremal index of sequences satisfying certain local conditions similar to conditions D(m)(un), m ∈ N, defined by Chernick et al. (1991). We apply the results to a class of max-autoregressive sequences and a class of moving average models. The results generalize the ones obtained for the stationary case. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/other |
format |
other |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/11287 https://hdl.handle.net/10316/11287 |
url |
https://hdl.handle.net/10316/11287 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Pré-Publicações DMUC. 07-31 (2007) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Centro de Matemática da Universidade de Coimbra |
publisher.none.fl_str_mv |
Centro de Matemática da Universidade de Coimbra |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602338962538496 |