Colloidal Lithography for Light Trapping in Flexible Thin Film Solar Cells

Detalhes bibliográficos
Autor(a) principal: Boane, Jenny Luis Nhaliguangue
Data de Publicação: 2024
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10362/178518
Resumo: The demand for more efficient, reliable, and economical optoelectronic and photovoltaic (PV) devices has led researchers to explore nano/microtechnological solutions. These solu- tions aim to enhance PV performance without significantly increasing production costs. Among these, photonic structures based on wavelength-sized transparent conductive oxides (TCOs) are particularly promising. They improve efficiency by reducing reflection and opti- mizing light absorption inside the solar cells, as well as in other photodetector devices like UV sensors. In this work, we developed a simple, low-cost, versatile, and highly scalable colloidal lithography process to fabricate and optimize three different microstructures: indium zinc ox- ide (IZO), indium tin oxide (ITO), and titanium dioxide (TiO2). These microstructures, with wavelength-sized features, were smoothly modelled on flexible ITO substrates coated with polyethylene terephthalate (PET), parylene C membranes, and rigid substrates (glass) coated with ITO. The ITO micro-mesh demonstrated enhanced transparent electrode properties, showing significant light interaction with a pronounced light scattering performance (diffuse transmission up to ~50%). Additionally, the microstructured photonic mesh of TCOs allowed for a greater volume of material in the electrode while maintaining desired transparency, lead- ing to a reduction in sheet resistance (~14%) and improved electrical benefits due to enhanced contact conductance. When integrated into perovskite solar cell test devices, these microstruc- tured photonic meshes provided excellent optical improvements, yielding short-circuit pho- tocurrent gains of up to ~20% and efficiency gains of up to ~17%, closely matching the values predicted by modelling optimizations. In view of exploring other promising applications, the microstructuring of test parylene- C membranes was investigated in UV sensors. This resulted in a pronouncedly enhanced pho- tocurrent response when compared with non-structured devices. These findings pave the way for a new class of transparent photonic electrodes with mechanical flexibility. They hold strong potential not only as advanced front contacts for thin- film foldable solar cells but also for a wide range of optoelectronic applications.
id RCAP_e66f08fd7b2766e5455c8e8e8a65b62e
oai_identifier_str oai:run.unl.pt:10362/178518
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Colloidal Lithography for Light Trapping in Flexible Thin Film Solar CellsPhotovoltaicsPhotonicsColloidal LithographyTransparent Microstructured electrodes UV SensorsDomínio/Área Científica::Engenharia e Tecnologia::Engenharia dos MateriaisThe demand for more efficient, reliable, and economical optoelectronic and photovoltaic (PV) devices has led researchers to explore nano/microtechnological solutions. These solu- tions aim to enhance PV performance without significantly increasing production costs. Among these, photonic structures based on wavelength-sized transparent conductive oxides (TCOs) are particularly promising. They improve efficiency by reducing reflection and opti- mizing light absorption inside the solar cells, as well as in other photodetector devices like UV sensors. In this work, we developed a simple, low-cost, versatile, and highly scalable colloidal lithography process to fabricate and optimize three different microstructures: indium zinc ox- ide (IZO), indium tin oxide (ITO), and titanium dioxide (TiO2). These microstructures, with wavelength-sized features, were smoothly modelled on flexible ITO substrates coated with polyethylene terephthalate (PET), parylene C membranes, and rigid substrates (glass) coated with ITO. The ITO micro-mesh demonstrated enhanced transparent electrode properties, showing significant light interaction with a pronounced light scattering performance (diffuse transmission up to ~50%). Additionally, the microstructured photonic mesh of TCOs allowed for a greater volume of material in the electrode while maintaining desired transparency, lead- ing to a reduction in sheet resistance (~14%) and improved electrical benefits due to enhanced contact conductance. When integrated into perovskite solar cell test devices, these microstruc- tured photonic meshes provided excellent optical improvements, yielding short-circuit pho- tocurrent gains of up to ~20% and efficiency gains of up to ~17%, closely matching the values predicted by modelling optimizations. In view of exploring other promising applications, the microstructuring of test parylene- C membranes was investigated in UV sensors. This resulted in a pronouncedly enhanced pho- tocurrent response when compared with non-structured devices. These findings pave the way for a new class of transparent photonic electrodes with mechanical flexibility. They hold strong potential not only as advanced front contacts for thin- film foldable solar cells but also for a wide range of optoelectronic applications.A procura de dispositivos optoelectrónicos e fotovoltaicos (PV) mais eficientes, fiáveis e económicos levou os investigadores a explorar soluções nano/microtecnológicas. Estas solu- ções têm como objetivo melhorar o desempenho fotovoltaico sem aumentar significativamente os custos de produção. Entre estas, as estruturas fotónicas baseadas em óxidos condutores transparentes (TCO) com dimensões na escala do comprimento de onda são particularmente promissoras. Melhoram a eficiência reduzindo a reflexão e captando a luz nas células solares, bem como noutros dispositivos fotodetectores, como os sensores de UV. Neste trabalho, de- senvolvemos um processo de litografia coloidal simples, de baixo custo, versátil e altamente escalável para fabricar e otimizar três microestruturas diferentes: óxido de índio e zinco (IZO), óxido de índio e estanho (ITO) e dióxido de titânio (TiO2). Estas microestruturas, com dimen- sões na escala de comprimento de onda, foram modeladas sem problemas em substratos ITO flexíveis revestidos com Politereftalato de Etileno (PET), membranas de parileno-C e substra- tos rígidos (vidro) revestidos com ITO. A micro-malha de ITO demonstrou propriedades de elétrodo transparente melhoradas, mostrando uma interação significativa da luz com um desempenho pronunciado de dispersão da luz (transmissão difusa até ~50%). Além disso, a malha fotónica microestruturada de TCOs permitiu um maior volume de material no elétrodo, mantendo a transparência desejada, o que levou a uma redução da resistência da folha (~14%) e a melhores benefícios elétricos devido a uma maior condutância de contacto. Quando integradas em dispositivos de teste de células solares de perovskite, estas malhas fotónicas microestruturadas proporcionaram excelentes melhorias óticas, produzindo ganhos de fotocorrente de curto-circuito de até ~20% e ganhos de eficiência de até ~17%, correspondendo de perto aos valores previstos pelas otimizações de modelização. Com o objetivo de explorar outras aplicações promissoras, foi investigada a microestru- turação de membranas de parileno-C de ensaio em sensores de UV. Este facto resultou numa resposta de fotocorrente acentuadamente melhorada quando comparada com dispositivos não estruturados. Estas descobertas abrem caminho a uma nova classe de elétrodos fotónicos transparentes com flexibilidade mecânica. Estes elétrodos têm um forte potencial não só como contactos frontais avançados para células solares dobráveis de película fina, mas também para uma vasta gama de aplicações optoelectrónicas.Águas, HugoMendes, ManuelRUNBoane, Jenny Luis Nhaliguangue2025-02-06T16:59:10Z20242024-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/178518enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-10T01:39:42Zoai:run.unl.pt:10362/178518Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:46:52.642659Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Colloidal Lithography for Light Trapping in Flexible Thin Film Solar Cells
title Colloidal Lithography for Light Trapping in Flexible Thin Film Solar Cells
spellingShingle Colloidal Lithography for Light Trapping in Flexible Thin Film Solar Cells
Boane, Jenny Luis Nhaliguangue
Photovoltaics
Photonics
Colloidal Lithography
Transparent Microstructured electrodes UV Sensors
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais
title_short Colloidal Lithography for Light Trapping in Flexible Thin Film Solar Cells
title_full Colloidal Lithography for Light Trapping in Flexible Thin Film Solar Cells
title_fullStr Colloidal Lithography for Light Trapping in Flexible Thin Film Solar Cells
title_full_unstemmed Colloidal Lithography for Light Trapping in Flexible Thin Film Solar Cells
title_sort Colloidal Lithography for Light Trapping in Flexible Thin Film Solar Cells
author Boane, Jenny Luis Nhaliguangue
author_facet Boane, Jenny Luis Nhaliguangue
author_role author
dc.contributor.none.fl_str_mv Águas, Hugo
Mendes, Manuel
RUN
dc.contributor.author.fl_str_mv Boane, Jenny Luis Nhaliguangue
dc.subject.por.fl_str_mv Photovoltaics
Photonics
Colloidal Lithography
Transparent Microstructured electrodes UV Sensors
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais
topic Photovoltaics
Photonics
Colloidal Lithography
Transparent Microstructured electrodes UV Sensors
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais
description The demand for more efficient, reliable, and economical optoelectronic and photovoltaic (PV) devices has led researchers to explore nano/microtechnological solutions. These solu- tions aim to enhance PV performance without significantly increasing production costs. Among these, photonic structures based on wavelength-sized transparent conductive oxides (TCOs) are particularly promising. They improve efficiency by reducing reflection and opti- mizing light absorption inside the solar cells, as well as in other photodetector devices like UV sensors. In this work, we developed a simple, low-cost, versatile, and highly scalable colloidal lithography process to fabricate and optimize three different microstructures: indium zinc ox- ide (IZO), indium tin oxide (ITO), and titanium dioxide (TiO2). These microstructures, with wavelength-sized features, were smoothly modelled on flexible ITO substrates coated with polyethylene terephthalate (PET), parylene C membranes, and rigid substrates (glass) coated with ITO. The ITO micro-mesh demonstrated enhanced transparent electrode properties, showing significant light interaction with a pronounced light scattering performance (diffuse transmission up to ~50%). Additionally, the microstructured photonic mesh of TCOs allowed for a greater volume of material in the electrode while maintaining desired transparency, lead- ing to a reduction in sheet resistance (~14%) and improved electrical benefits due to enhanced contact conductance. When integrated into perovskite solar cell test devices, these microstruc- tured photonic meshes provided excellent optical improvements, yielding short-circuit pho- tocurrent gains of up to ~20% and efficiency gains of up to ~17%, closely matching the values predicted by modelling optimizations. In view of exploring other promising applications, the microstructuring of test parylene- C membranes was investigated in UV sensors. This resulted in a pronouncedly enhanced pho- tocurrent response when compared with non-structured devices. These findings pave the way for a new class of transparent photonic electrodes with mechanical flexibility. They hold strong potential not only as advanced front contacts for thin- film foldable solar cells but also for a wide range of optoelectronic applications.
publishDate 2024
dc.date.none.fl_str_mv 2024
2024-01-01T00:00:00Z
2025-02-06T16:59:10Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/178518
url http://hdl.handle.net/10362/178518
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598321293262848