Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition

Bibliographic Details
Main Author: Bandyopadhyay, Tathagata
Publication Date: 2016
Other Authors: Mitra, Sreetama, Mitra, Shyamali, Rato, Luís, Das, Nibaran
Format: Article
Language: por
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10174/20489
https://doi.org/10.1007/978-981-10-3156-4
Summary: Subtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best.
id RCAP_e3fd9c19e5b02f372b48a2413626633f
oai_identifier_str oai:dspace.uevora.pt:10174/20489
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet DecompositionimagehistologydiabeteswaveletpancreasSubtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best.Springer2017-01-31T13:23:37Z2017-01-312016-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/20489http://hdl.handle.net/10174/20489https://doi.org/10.1007/978-981-10-3156-4porBandyopadhyay, T., Mitra, (Sretama), Mitra, (Shyamali), Rato, L., Das, N., Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition, Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications, FICTA 2016, Springer, 2016.ndndndlmr@uevora.ptnd493Bandyopadhyay, TathagataMitra, SreetamaMitra, ShyamaliRato, LuísDas, Nibaraninfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T19:10:26Zoai:dspace.uevora.pt:10174/20489Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T12:12:42.935884Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
title Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
spellingShingle Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
Bandyopadhyay, Tathagata
image
histology
diabetes
wavelet
pancreas
title_short Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
title_full Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
title_fullStr Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
title_full_unstemmed Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
title_sort Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition
author Bandyopadhyay, Tathagata
author_facet Bandyopadhyay, Tathagata
Mitra, Sreetama
Mitra, Shyamali
Rato, Luís
Das, Nibaran
author_role author
author2 Mitra, Sreetama
Mitra, Shyamali
Rato, Luís
Das, Nibaran
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Bandyopadhyay, Tathagata
Mitra, Sreetama
Mitra, Shyamali
Rato, Luís
Das, Nibaran
dc.subject.por.fl_str_mv image
histology
diabetes
wavelet
pancreas
topic image
histology
diabetes
wavelet
pancreas
description Subtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-01T00:00:00Z
2017-01-31T13:23:37Z
2017-01-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/20489
http://hdl.handle.net/10174/20489
https://doi.org/10.1007/978-981-10-3156-4
url http://hdl.handle.net/10174/20489
https://doi.org/10.1007/978-981-10-3156-4
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Bandyopadhyay, T., Mitra, (Sretama), Mitra, (Shyamali), Rato, L., Das, N., Analysis of Pancreas Histological Images for Glucose Intolerance Identification using Wavelet Decomposition, Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications, FICTA 2016, Springer, 2016.
nd
nd
nd
lmr@uevora.pt
nd
493
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592625966350336