Capacitively coupled radio-frequency N2 discharges at low pressures

Bibliographic Details
Main Author: Marques, L.
Publication Date: 2013
Other Authors: Alves, L. L., Pintassilgo, C. D., Carrasco, N., Boufendi, L., Cernogora, G.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/26866
Summary: Capacitively coupled radio-frequency discharges (ccrf) in nitrogen mixtures are frequently used for the processing, modification and functionalization of different kinds of materials. Although nitrogen plasmas have been studied for many years, and despite their growing interest in applications, there is only partial knowledge about ccrf nitrogen plasmas. This paper uses experiments and modelling to study ccrf discharges in pure nitrogen, at 13.56 MHz frequency, 0.1–1 mbar pressures and 2–30 W coupled powers [1]. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an actinometer). In the particular case of non-equilibrium ccrf discharges in nitrogen, a self-consistent modeling strategy must account for the interplay between the transport of particles, in the presence of density gradients and the rf field, and their production/destruction due to kinetic mechanisms involving both electrons and heavy species. Simulations use a hybrid code that couples a two-dimensional timedependent fluid module [2], describing the dynamics of the charged particles (electrons and positive ions N2 + and N4 +), and a zero-dimensional kinetic module, describing the production and destruction of nitrogen (atomic and molecular) neutral species [3]. The coupling between these modules adopts the local mean energy approximation to define space–time-dependent electron parameters for the fluid module and to work out space–time-averaged rates for the kinetic module. The model gives general good predictions for the self-bias voltage and for the intensities of radiative transitions (both average and spatially resolved), underestimating the electron density by a factor of 3–4.
id RCAP_e07c91f476e3e5f07b93fa06cc64ee7a
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/26866
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Capacitively coupled radio-frequency N2 discharges at low pressuresCapacitively coupled radio-frequency discharges (ccrf) in nitrogen mixtures are frequently used for the processing, modification and functionalization of different kinds of materials. Although nitrogen plasmas have been studied for many years, and despite their growing interest in applications, there is only partial knowledge about ccrf nitrogen plasmas. This paper uses experiments and modelling to study ccrf discharges in pure nitrogen, at 13.56 MHz frequency, 0.1–1 mbar pressures and 2–30 W coupled powers [1]. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an actinometer). In the particular case of non-equilibrium ccrf discharges in nitrogen, a self-consistent modeling strategy must account for the interplay between the transport of particles, in the presence of density gradients and the rf field, and their production/destruction due to kinetic mechanisms involving both electrons and heavy species. Simulations use a hybrid code that couples a two-dimensional timedependent fluid module [2], describing the dynamics of the charged particles (electrons and positive ions N2 + and N4 +), and a zero-dimensional kinetic module, describing the production and destruction of nitrogen (atomic and molecular) neutral species [3]. The coupling between these modules adopts the local mean energy approximation to define space–time-dependent electron parameters for the fluid module and to work out space–time-averaged rates for the kinetic module. The model gives general good predictions for the self-bias voltage and for the intensities of radiative transitions (both average and spatially resolved), underestimating the electron density by a factor of 3–4.Fundação para a Ciência e a Tecnologia (FCT)Universidade do MinhoMarques, L.Alves, L. L.Pintassilgo, C. D.Carrasco, N.Boufendi, L.Cernogora, G.2013-08-252013-08-25T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/26866enghttp://www.aepse2013.org/pages/sub_04_01.htmlinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:29:37Zoai:repositorium.sdum.uminho.pt:1822/26866Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:20:08.957518Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Capacitively coupled radio-frequency N2 discharges at low pressures
title Capacitively coupled radio-frequency N2 discharges at low pressures
spellingShingle Capacitively coupled radio-frequency N2 discharges at low pressures
Marques, L.
title_short Capacitively coupled radio-frequency N2 discharges at low pressures
title_full Capacitively coupled radio-frequency N2 discharges at low pressures
title_fullStr Capacitively coupled radio-frequency N2 discharges at low pressures
title_full_unstemmed Capacitively coupled radio-frequency N2 discharges at low pressures
title_sort Capacitively coupled radio-frequency N2 discharges at low pressures
author Marques, L.
author_facet Marques, L.
Alves, L. L.
Pintassilgo, C. D.
Carrasco, N.
Boufendi, L.
Cernogora, G.
author_role author
author2 Alves, L. L.
Pintassilgo, C. D.
Carrasco, N.
Boufendi, L.
Cernogora, G.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Marques, L.
Alves, L. L.
Pintassilgo, C. D.
Carrasco, N.
Boufendi, L.
Cernogora, G.
description Capacitively coupled radio-frequency discharges (ccrf) in nitrogen mixtures are frequently used for the processing, modification and functionalization of different kinds of materials. Although nitrogen plasmas have been studied for many years, and despite their growing interest in applications, there is only partial knowledge about ccrf nitrogen plasmas. This paper uses experiments and modelling to study ccrf discharges in pure nitrogen, at 13.56 MHz frequency, 0.1–1 mbar pressures and 2–30 W coupled powers [1]. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an actinometer). In the particular case of non-equilibrium ccrf discharges in nitrogen, a self-consistent modeling strategy must account for the interplay between the transport of particles, in the presence of density gradients and the rf field, and their production/destruction due to kinetic mechanisms involving both electrons and heavy species. Simulations use a hybrid code that couples a two-dimensional timedependent fluid module [2], describing the dynamics of the charged particles (electrons and positive ions N2 + and N4 +), and a zero-dimensional kinetic module, describing the production and destruction of nitrogen (atomic and molecular) neutral species [3]. The coupling between these modules adopts the local mean energy approximation to define space–time-dependent electron parameters for the fluid module and to work out space–time-averaged rates for the kinetic module. The model gives general good predictions for the self-bias voltage and for the intensities of radiative transitions (both average and spatially resolved), underestimating the electron density by a factor of 3–4.
publishDate 2013
dc.date.none.fl_str_mv 2013-08-25
2013-08-25T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/26866
url http://hdl.handle.net/1822/26866
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.aepse2013.org/pages/sub_04_01.html
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595251470630912