Monogenic polynomials of four variables with binomial expansion

Bibliographic Details
Main Author: Cruz, C.
Publication Date: 2014
Other Authors: Falcão, M. I., Malonek, H. R.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/29809
Summary: In the recent past one of the main concern of research in the field of Hypercomplex Function Theory in Clifford Algebras was the development of a variety of new tools for a deeper understanding about its true elementary roots in the Function Theory of one Complex Variable. Therefore the study of the space of monogenic (Clifford holomorphic) functions by its stratification via homogeneous monogenic polynomials is a useful tool. In this paper we consider the structure of those polynomials of four real variables with binomial expansion. This allows a complete characterization of sequences of 4D generalized monogenic Appell polynomials by three different types of polynomials. A particularly important case is that of monogenic polynomials which are simply isomorphic to the integer powers of one complex variable and therefore also called pseudo-complex powers.
id RCAP_e017a766549c20811681c0c84c7788e8
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/29809
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Monogenic polynomials of four variables with binomial expansionMonogenic polynomialsAppell sequencesPseudo-complex powersScience & TechnologyIn the recent past one of the main concern of research in the field of Hypercomplex Function Theory in Clifford Algebras was the development of a variety of new tools for a deeper understanding about its true elementary roots in the Function Theory of one Complex Variable. Therefore the study of the space of monogenic (Clifford holomorphic) functions by its stratification via homogeneous monogenic polynomials is a useful tool. In this paper we consider the structure of those polynomials of four real variables with binomial expansion. This allows a complete characterization of sequences of 4D generalized monogenic Appell polynomials by three different types of polynomials. A particularly important case is that of monogenic polynomials which are simply isomorphic to the integer powers of one complex variable and therefore also called pseudo-complex powers.Fundação para a Ciência e a Tecnologia (FCT)Springer International Publishing AGUniversidade do MinhoCruz, C.Falcão, M. I.Malonek, H. R.2014-07-302014-07-30T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/29809eng97833190914330302-974310.1007/978-3-319-09144-0_15www.springerlink.cominfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:50:30Zoai:repositorium.sdum.uminho.pt:1822/29809Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:31:50.282790Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Monogenic polynomials of four variables with binomial expansion
title Monogenic polynomials of four variables with binomial expansion
spellingShingle Monogenic polynomials of four variables with binomial expansion
Cruz, C.
Monogenic polynomials
Appell sequences
Pseudo-complex powers
Science & Technology
title_short Monogenic polynomials of four variables with binomial expansion
title_full Monogenic polynomials of four variables with binomial expansion
title_fullStr Monogenic polynomials of four variables with binomial expansion
title_full_unstemmed Monogenic polynomials of four variables with binomial expansion
title_sort Monogenic polynomials of four variables with binomial expansion
author Cruz, C.
author_facet Cruz, C.
Falcão, M. I.
Malonek, H. R.
author_role author
author2 Falcão, M. I.
Malonek, H. R.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Cruz, C.
Falcão, M. I.
Malonek, H. R.
dc.subject.por.fl_str_mv Monogenic polynomials
Appell sequences
Pseudo-complex powers
Science & Technology
topic Monogenic polynomials
Appell sequences
Pseudo-complex powers
Science & Technology
description In the recent past one of the main concern of research in the field of Hypercomplex Function Theory in Clifford Algebras was the development of a variety of new tools for a deeper understanding about its true elementary roots in the Function Theory of one Complex Variable. Therefore the study of the space of monogenic (Clifford holomorphic) functions by its stratification via homogeneous monogenic polynomials is a useful tool. In this paper we consider the structure of those polynomials of four real variables with binomial expansion. This allows a complete characterization of sequences of 4D generalized monogenic Appell polynomials by three different types of polynomials. A particularly important case is that of monogenic polynomials which are simply isomorphic to the integer powers of one complex variable and therefore also called pseudo-complex powers.
publishDate 2014
dc.date.none.fl_str_mv 2014-07-30
2014-07-30T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/29809
url http://hdl.handle.net/1822/29809
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 9783319091433
0302-9743
10.1007/978-3-319-09144-0_15
www.springerlink.com
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer International Publishing AG
publisher.none.fl_str_mv Springer International Publishing AG
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595374637416448