Monogenic polynomials of four variables with binomial expansion
Main Author: | |
---|---|
Publication Date: | 2014 |
Other Authors: | , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/29809 |
Summary: | In the recent past one of the main concern of research in the field of Hypercomplex Function Theory in Clifford Algebras was the development of a variety of new tools for a deeper understanding about its true elementary roots in the Function Theory of one Complex Variable. Therefore the study of the space of monogenic (Clifford holomorphic) functions by its stratification via homogeneous monogenic polynomials is a useful tool. In this paper we consider the structure of those polynomials of four real variables with binomial expansion. This allows a complete characterization of sequences of 4D generalized monogenic Appell polynomials by three different types of polynomials. A particularly important case is that of monogenic polynomials which are simply isomorphic to the integer powers of one complex variable and therefore also called pseudo-complex powers. |
id |
RCAP_e017a766549c20811681c0c84c7788e8 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/29809 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Monogenic polynomials of four variables with binomial expansionMonogenic polynomialsAppell sequencesPseudo-complex powersScience & TechnologyIn the recent past one of the main concern of research in the field of Hypercomplex Function Theory in Clifford Algebras was the development of a variety of new tools for a deeper understanding about its true elementary roots in the Function Theory of one Complex Variable. Therefore the study of the space of monogenic (Clifford holomorphic) functions by its stratification via homogeneous monogenic polynomials is a useful tool. In this paper we consider the structure of those polynomials of four real variables with binomial expansion. This allows a complete characterization of sequences of 4D generalized monogenic Appell polynomials by three different types of polynomials. A particularly important case is that of monogenic polynomials which are simply isomorphic to the integer powers of one complex variable and therefore also called pseudo-complex powers.Fundação para a Ciência e a Tecnologia (FCT)Springer International Publishing AGUniversidade do MinhoCruz, C.Falcão, M. I.Malonek, H. R.2014-07-302014-07-30T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/29809eng97833190914330302-974310.1007/978-3-319-09144-0_15www.springerlink.cominfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:50:30Zoai:repositorium.sdum.uminho.pt:1822/29809Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:31:50.282790Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Monogenic polynomials of four variables with binomial expansion |
title |
Monogenic polynomials of four variables with binomial expansion |
spellingShingle |
Monogenic polynomials of four variables with binomial expansion Cruz, C. Monogenic polynomials Appell sequences Pseudo-complex powers Science & Technology |
title_short |
Monogenic polynomials of four variables with binomial expansion |
title_full |
Monogenic polynomials of four variables with binomial expansion |
title_fullStr |
Monogenic polynomials of four variables with binomial expansion |
title_full_unstemmed |
Monogenic polynomials of four variables with binomial expansion |
title_sort |
Monogenic polynomials of four variables with binomial expansion |
author |
Cruz, C. |
author_facet |
Cruz, C. Falcão, M. I. Malonek, H. R. |
author_role |
author |
author2 |
Falcão, M. I. Malonek, H. R. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Cruz, C. Falcão, M. I. Malonek, H. R. |
dc.subject.por.fl_str_mv |
Monogenic polynomials Appell sequences Pseudo-complex powers Science & Technology |
topic |
Monogenic polynomials Appell sequences Pseudo-complex powers Science & Technology |
description |
In the recent past one of the main concern of research in the field of Hypercomplex Function Theory in Clifford Algebras was the development of a variety of new tools for a deeper understanding about its true elementary roots in the Function Theory of one Complex Variable. Therefore the study of the space of monogenic (Clifford holomorphic) functions by its stratification via homogeneous monogenic polynomials is a useful tool. In this paper we consider the structure of those polynomials of four real variables with binomial expansion. This allows a complete characterization of sequences of 4D generalized monogenic Appell polynomials by three different types of polynomials. A particularly important case is that of monogenic polynomials which are simply isomorphic to the integer powers of one complex variable and therefore also called pseudo-complex powers. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07-30 2014-07-30T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/29809 |
url |
http://hdl.handle.net/1822/29809 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
9783319091433 0302-9743 10.1007/978-3-319-09144-0_15 www.springerlink.com |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer International Publishing AG |
publisher.none.fl_str_mv |
Springer International Publishing AG |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595374637416448 |