Developing deep learning computational tools for cancer using omics data

Bibliographic Details
Main Author: Peixoto, Luís Miguel da Cunha
Publication Date: 2018
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/64163
Summary: Dissertação de mestrado em Computer Science
id RCAP_dfae08086a25eb9bc204e13c8ce5c697
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/64163
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Developing deep learning computational tools for cancer using omics dataEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaDissertação de mestrado em Computer ScienceThere has been an increasing investment in cancer research that generated an enormous amount of biological and clinical data, especially after the advent of the next-generation sequencing technologies. To analyze the large datasets provided by omics data of cancer samples, scientists have successfully been recurring to machine learning algorithms, identifying patterns and developing models by using statistical techniques to make accurate predictions. Deep learning is a branch of machine learning, best known by its applications in artificial intelligence (computer vision, speech recognition, natural language processing and robotics). In general, deep learning models differ from machine learning “shallow” methods (single hidden layer) because they recur to multiple layers of abstraction. In this way, it is possible to learn high level features and complex relations in the given data. Given the context specified above, the main target of this work is the development and evaluation of deep learning methods for the analysis of cancer omics datasets, covering both unsupervised methods for feature generation from different types of data, and supervised methods to address cancer diagnostics and prognostic predictions. We worked with a Neuroblastoma (NB) dataset from two different platforms (RNA-Seq and microarrays) and developed both supervised (Deep Neural Networks (DNN), Multi-Task Deep Neural Network (MT-DNN)) and unsupervised (Stacked Denoising Autoencoders (SDA)) deep architectures, and compared them with shallow traditional algorithms. Overall we achieved promising results with deep learning on both platforms, meaning that it is possible to retrieve the advantages of deep learning models on cancer omics data. At the same time we faced some difficulties related to the complexity and computational power requirements, as well as the lack of samples to truly benefit from the deep architectures. There was generated code that can be applied to other datasets, wich is available in a github repository https://github.com/lmpeixoto/deepl_learning [49].Nos últimos anos tem havido um investimento significativo na pesquisa de cancro, o que gerou uma quantidade enorme de dados biológicos e clínicos, especialmente após o aparecimento das tecnologias de sequenciação denominadas de “próxima-geração”. Para analisar estes dados, a comunidade científica tem recorrido, e com sucesso, a algoritmos de aprendizado de máquina, identificando padrões e desenvolvendo modelos com recurso a métodos estatísticos. Com estes modelos é possível fazer previsão de resultados. O aprendizado profundo, um ramo do aprendizado de máquina, tem sido mais notório pelas suas aplicações em inteligência artificial (reconhecimento de imagens e voz, processamento de linguagem natural e robótica). De um modo geral, os modelos de aprendizado profundo diferem dos métodos clássicos do aprendizado de máquina por recorrerem a várias camadas de abstração. Desta forma, é possível “aprender” as representações complexas e não lineares, com vários graus de liberdade dos dados analisados. Neste contexto, o objetivo principal deste trabalho é desenvolver e avaliar métodos de aprendizado profundo para analisar dados ómicos do cancro. Pretendem-se desenvolver tanto métodos supervisionados como não-supervisionados e utilizar diferentes tipos de dados, construindo soluções para diagnóstico e prognóstico do cancro. Para isso trabalhámos com uma matriz de dados de Neuroblastoma, proveniente de duas plataformas diferentes (RNA-seq e microarrays), nos quais aplicámos algumas arquiteturas de aprendizado profundo, tanto como métodos supervisionados e não-supervisionados, e com as quais comparámos com algoritmos tradicionais de aprendizado de máquina. No geral conseguimos obter resultados promissores nas duas plataformas, o que significou ser possível beneficiar das vantagens dos modelos do aprendizado profundo nos dados ómicos de cancro. Ao mesmo tempo encontrámos algumas dificuldades, de modo especial relacionadas com a complexidade dos modelos e o poder computacional exigido, bem como o baixo número de amostras disponíveis. Na sequencia deste trabalho foi gerado código que pode ser aplicado a outros dados e está disponível num repositório do github https://github.com/lmpeixoto/deepl_learning [49].Rocha, MiguelFerreira, Pedro GabrielUniversidade do MinhoPeixoto, Luís Miguel da Cunha20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1822/64163eng202342093info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:03:33Zoai:repositorium.sdum.uminho.pt:1822/64163Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:39:32.970207Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Developing deep learning computational tools for cancer using omics data
title Developing deep learning computational tools for cancer using omics data
spellingShingle Developing deep learning computational tools for cancer using omics data
Peixoto, Luís Miguel da Cunha
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Developing deep learning computational tools for cancer using omics data
title_full Developing deep learning computational tools for cancer using omics data
title_fullStr Developing deep learning computational tools for cancer using omics data
title_full_unstemmed Developing deep learning computational tools for cancer using omics data
title_sort Developing deep learning computational tools for cancer using omics data
author Peixoto, Luís Miguel da Cunha
author_facet Peixoto, Luís Miguel da Cunha
author_role author
dc.contributor.none.fl_str_mv Rocha, Miguel
Ferreira, Pedro Gabriel
Universidade do Minho
dc.contributor.author.fl_str_mv Peixoto, Luís Miguel da Cunha
dc.subject.por.fl_str_mv Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Dissertação de mestrado em Computer Science
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/64163
url https://hdl.handle.net/1822/64163
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 202342093
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595455050612736