Dynamic Network Slicing Using Deep Reinforcement Learning

Detalhes bibliográficos
Autor(a) principal: Oliveira, Pedro Miguel Silvério de
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10362/155750
Resumo: Nowadays network slicing is one of the biggest drivers of new elements in the 5G network business. This is because this paradigm allows the creation of independent slices, with their virtually and logically separated radio, network and computational resources. Using network slicing, operators sell infrastructure resources of any kind to tenants, while tenants use these resources to sell services to their customers, the end users. In this context, a problem that is essential to solve is how to improve the operator’s profit, ensuring compliance with the requests’ SLAs and distributing network resources in order to increase its usage rate. This dissertation proposes to design two algorithms based on DRL for slice admission in the transport network, learning which request to accept and reject while guaranteeing the requirements of the tenants requests. The contributions of this study start with the formalization of the problem of slice admission, followed by its simulation and implementation of DRL agents using Containernet, the Ryu controller, OpenAI Gym and the PyTorch framework. The result is two DRL-based algorithms capable of achieving good performances in this simulated scenario.
id RCAP_b4bac802ec20c926b2e5ec7912a91505
oai_identifier_str oai:run.unl.pt:10362/155750
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Dynamic Network Slicing Using Deep Reinforcement LearningNetwork slicingDeep Reinforcement LearningAdmission ControlDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaNowadays network slicing is one of the biggest drivers of new elements in the 5G network business. This is because this paradigm allows the creation of independent slices, with their virtually and logically separated radio, network and computational resources. Using network slicing, operators sell infrastructure resources of any kind to tenants, while tenants use these resources to sell services to their customers, the end users. In this context, a problem that is essential to solve is how to improve the operator’s profit, ensuring compliance with the requests’ SLAs and distributing network resources in order to increase its usage rate. This dissertation proposes to design two algorithms based on DRL for slice admission in the transport network, learning which request to accept and reject while guaranteeing the requirements of the tenants requests. The contributions of this study start with the formalization of the problem of slice admission, followed by its simulation and implementation of DRL agents using Containernet, the Ryu controller, OpenAI Gym and the PyTorch framework. The result is two DRL-based algorithms capable of achieving good performances in this simulated scenario.Atualmente o network slicing é um dos maiores potenciadores de novos elementos no negócio das redes 5G. Isto deve-se ao facto de este paradigma permitir a criação de slices independentes, com os seus recursos rádio, de rede e computacionais virtual e logicamente separados. Utilizando network slicing, as operadoras poderão vender recursos de infraestrutura de qualquer tipo a tenants. Os tenants utilizam estes recursos para vender serviços aos seus clientes, os utilizadores finais. Neste contexto, um problema que é fundamental resolver é o de como melhorar o lucro da operadora, garantindo o cumprimento dos SLAs dos pedidos e distribuindo os recursos da rede de forma a aumentar a sua utilização. Nesta dissertação propõe-se desenhar dois algoritmos baseados em DRL para a admissão de slices na rede de transporte, aprendendo que pedidos aceitar e rejeitar, procurando satisfazer sempre os requisitos dos pedidos dos tenants. Os contributos deste estudo passam pela formalização do problema da admissão de slices na rede, seguindo-se a sua simulação e implementação dos agentes utilizando conjuntamente o Containernet, o controlador Ryu, o OpenAI Gym e o framework PyTorch. O resultado são dois algoritmos baseados em DRL capazes de atingir boas performances neste cenário simulado.Amaral, PedroRUNOliveira, Pedro Miguel Silvério de2023-07-24T14:58:41Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/155750enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:13:20Zoai:run.unl.pt:10362/155750Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:43:49.835179Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Dynamic Network Slicing Using Deep Reinforcement Learning
title Dynamic Network Slicing Using Deep Reinforcement Learning
spellingShingle Dynamic Network Slicing Using Deep Reinforcement Learning
Oliveira, Pedro Miguel Silvério de
Network slicing
Deep Reinforcement Learning
Admission Control
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Dynamic Network Slicing Using Deep Reinforcement Learning
title_full Dynamic Network Slicing Using Deep Reinforcement Learning
title_fullStr Dynamic Network Slicing Using Deep Reinforcement Learning
title_full_unstemmed Dynamic Network Slicing Using Deep Reinforcement Learning
title_sort Dynamic Network Slicing Using Deep Reinforcement Learning
author Oliveira, Pedro Miguel Silvério de
author_facet Oliveira, Pedro Miguel Silvério de
author_role author
dc.contributor.none.fl_str_mv Amaral, Pedro
RUN
dc.contributor.author.fl_str_mv Oliveira, Pedro Miguel Silvério de
dc.subject.por.fl_str_mv Network slicing
Deep Reinforcement Learning
Admission Control
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Network slicing
Deep Reinforcement Learning
Admission Control
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Nowadays network slicing is one of the biggest drivers of new elements in the 5G network business. This is because this paradigm allows the creation of independent slices, with their virtually and logically separated radio, network and computational resources. Using network slicing, operators sell infrastructure resources of any kind to tenants, while tenants use these resources to sell services to their customers, the end users. In this context, a problem that is essential to solve is how to improve the operator’s profit, ensuring compliance with the requests’ SLAs and distributing network resources in order to increase its usage rate. This dissertation proposes to design two algorithms based on DRL for slice admission in the transport network, learning which request to accept and reject while guaranteeing the requirements of the tenants requests. The contributions of this study start with the formalization of the problem of slice admission, followed by its simulation and implementation of DRL agents using Containernet, the Ryu controller, OpenAI Gym and the PyTorch framework. The result is two DRL-based algorithms capable of achieving good performances in this simulated scenario.
publishDate 2022
dc.date.none.fl_str_mv 2022-02
2022-02-01T00:00:00Z
2023-07-24T14:58:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/155750
url http://hdl.handle.net/10362/155750
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596921690718208