Machine learning techniques for road traffic prediction using vehicular communications data
Main Author: | |
---|---|
Publication Date: | 2023 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/41831 |
Summary: | By leveraging advanced data analytics, machine learning algorithms, and real-time monitoring, traffic prediction goes beyond traditional reactive approaches, allowing for a more dynamic and responsive system. One key advantage of traffic prediction in Intelligent Transportation Systems is its ability to forecast congestion, bottlenecks, and traffic incidents before they occur. This foresight enables traffic management authorities to implement proactive measures, such as optimizing signal timings, adjusting speed limits, or rerouting vehicles, to alleviate potential issues and maintain a smooth flow of traffic. In the realm of smart cities, traffic prediction plays a pivotal role in creating more sustainable and eco-friendly urban environments. By providing insights into traffic patterns and trends, cities can optimize public transportation routes, encourage the use of alternative modes of transportation, and reduce overall carbon emissions. This holistic approach to transportation planning contributes to the development of greener and more livable urban spaces. However, predicting road traffic is arduous because it frequently follows complicated nonlinear temporal patterns. As a result, traditional statistical prediction approaches fail to provide reliable/accurate predictions. Deep Learning techniques are employed to solve this issue due to the recent increase in computational power and available historical traffic data. This dissertation describes the implementation of a storage solution for vehicular communications data, that is being collected within the scope of a Cooperative Intelligent Transportation System (C-ITS) via an MQTT broker, and the subsequent usage of said data for the development of a deep learning algorithm for predicting road traffic flow. The system’s behaviour was validated by tests conducted on its various components. |
id |
RCAP_de7aa19c6aaa467f37afe648a47f8a5e |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/41831 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Machine learning techniques for road traffic prediction using vehicular communications dataMachine learningDeep learningTraffic predictionTime seriesIntelligent Transportation SystemsSmart citiesVehicular communicationsBy leveraging advanced data analytics, machine learning algorithms, and real-time monitoring, traffic prediction goes beyond traditional reactive approaches, allowing for a more dynamic and responsive system. One key advantage of traffic prediction in Intelligent Transportation Systems is its ability to forecast congestion, bottlenecks, and traffic incidents before they occur. This foresight enables traffic management authorities to implement proactive measures, such as optimizing signal timings, adjusting speed limits, or rerouting vehicles, to alleviate potential issues and maintain a smooth flow of traffic. In the realm of smart cities, traffic prediction plays a pivotal role in creating more sustainable and eco-friendly urban environments. By providing insights into traffic patterns and trends, cities can optimize public transportation routes, encourage the use of alternative modes of transportation, and reduce overall carbon emissions. This holistic approach to transportation planning contributes to the development of greener and more livable urban spaces. However, predicting road traffic is arduous because it frequently follows complicated nonlinear temporal patterns. As a result, traditional statistical prediction approaches fail to provide reliable/accurate predictions. Deep Learning techniques are employed to solve this issue due to the recent increase in computational power and available historical traffic data. This dissertation describes the implementation of a storage solution for vehicular communications data, that is being collected within the scope of a Cooperative Intelligent Transportation System (C-ITS) via an MQTT broker, and the subsequent usage of said data for the development of a deep learning algorithm for predicting road traffic flow. The system’s behaviour was validated by tests conducted on its various components.Através da análise avançada de dados, da utilização de algoritmos de aprendizagem automática e da monitorização em tempo real, a previsão de tráfego permite suplantar as abordagens reativas tradicionais, criando um sistema mais dinâmico e reativo. Uma das principais vantagens da previsão de tráfego nos Sistemas Inteligentes de Transporte é a sua capacidade de prever congestionamentos, engarrafamentos e acidentes de trânsito antes da sua ocorrência. Esta previsão permite que as autoridades de gestão do tráfego implementem medidas pró-ativas, como a otimização dos tempos dos semáforos, o ajuste dos limites de velocidade ou o reencaminhamento dos veículos, para aliviar potenciais problemas e manter um fluxo de tráfego regular. No âmbito das cidades inteligentes, a previsão de tráfego desempenha um papel fundamental na criação de ambientes urbanos mais sustentáveis e ecológicos. Ao fornecer informações sobre os padrões e tendências do tráfego, as cidades podem otimizar as rotas dos transportes públicos, incentivar a utilização de modos de transporte alternativos e reduzir as emissões globais de carbono. Esta abordagem abrangente ao planeamento dos transportes contribui para o desenvolvimento de espaços urbanos mais ecológicos e habitáveis. No entanto, a previsão do tráfego rodoviário constitui uma tarefa árdua porque segue frequentemente padrões temporais não lineares complicados. Como resultado, as abordagens tradicionais de previsão estatística não conseguem fornecer previsões fiáveis/precisas. Técnicas de Aprendizagem Profunda são utilizadas para resolver esta questão devido ao recente aumento do poder computacional e dos dados históricos de tráfego disponíveis. Esta dissertação descreve a implementação de uma solução de armazenamento de dados de comunicações veiculares, que estão a ser recolhidos no âmbito um Sistema Inteligente de Transporte Cooperativo (C-ITS) através de um broker MQTT, e a subsequente utilização dos referidos dados no desenvolvimento de um algoritmo de aprendizagem profunda para a previsão do tráfego rodoviário. O comportamento do sistema foi validado através de testes efetuados nos seus diferentes componentes.2024-05-07T13:38:17Z2023-12-21T00:00:00Z2023-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41831engGonçalves, Francisco dos Santosinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-13T01:46:26Zoai:ria.ua.pt:10773/41831Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:35:56.143105Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Machine learning techniques for road traffic prediction using vehicular communications data |
title |
Machine learning techniques for road traffic prediction using vehicular communications data |
spellingShingle |
Machine learning techniques for road traffic prediction using vehicular communications data Gonçalves, Francisco dos Santos Machine learning Deep learning Traffic prediction Time series Intelligent Transportation Systems Smart cities Vehicular communications |
title_short |
Machine learning techniques for road traffic prediction using vehicular communications data |
title_full |
Machine learning techniques for road traffic prediction using vehicular communications data |
title_fullStr |
Machine learning techniques for road traffic prediction using vehicular communications data |
title_full_unstemmed |
Machine learning techniques for road traffic prediction using vehicular communications data |
title_sort |
Machine learning techniques for road traffic prediction using vehicular communications data |
author |
Gonçalves, Francisco dos Santos |
author_facet |
Gonçalves, Francisco dos Santos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Gonçalves, Francisco dos Santos |
dc.subject.por.fl_str_mv |
Machine learning Deep learning Traffic prediction Time series Intelligent Transportation Systems Smart cities Vehicular communications |
topic |
Machine learning Deep learning Traffic prediction Time series Intelligent Transportation Systems Smart cities Vehicular communications |
description |
By leveraging advanced data analytics, machine learning algorithms, and real-time monitoring, traffic prediction goes beyond traditional reactive approaches, allowing for a more dynamic and responsive system. One key advantage of traffic prediction in Intelligent Transportation Systems is its ability to forecast congestion, bottlenecks, and traffic incidents before they occur. This foresight enables traffic management authorities to implement proactive measures, such as optimizing signal timings, adjusting speed limits, or rerouting vehicles, to alleviate potential issues and maintain a smooth flow of traffic. In the realm of smart cities, traffic prediction plays a pivotal role in creating more sustainable and eco-friendly urban environments. By providing insights into traffic patterns and trends, cities can optimize public transportation routes, encourage the use of alternative modes of transportation, and reduce overall carbon emissions. This holistic approach to transportation planning contributes to the development of greener and more livable urban spaces. However, predicting road traffic is arduous because it frequently follows complicated nonlinear temporal patterns. As a result, traditional statistical prediction approaches fail to provide reliable/accurate predictions. Deep Learning techniques are employed to solve this issue due to the recent increase in computational power and available historical traffic data. This dissertation describes the implementation of a storage solution for vehicular communications data, that is being collected within the scope of a Cooperative Intelligent Transportation System (C-ITS) via an MQTT broker, and the subsequent usage of said data for the development of a deep learning algorithm for predicting road traffic flow. The system’s behaviour was validated by tests conducted on its various components. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-21T00:00:00Z 2023-12-21 2024-05-07T13:38:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/41831 |
url |
http://hdl.handle.net/10773/41831 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596046662434816 |