A cluster-based approach for cellular traffic prediction with machine learning methods

Bibliographic Details
Main Author: Correia, Daniel Vala
Publication Date: 2023
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/41694
Summary: Over the last decade, technologies like Fourth Generation of Cellular Communications (4G) and Cloud computing have profoundly transformed our way of living and communicating, increasing cellular traffic by tenfold every five years. Technologies like Fifth Generation of Cellular Communications (5G) and Internet of Things (IoT) are expected to continue this increasing trend. To handle such large and complex networks, the community strives to achieve self-management, intelligent Autonomous Networks (AN). With accurate traffic prediction, we can make autonomous decisions in planning, management, resource allocation, etc. This dissertation devotes itself to implementing and testing a cellular traffic predictive system of the state of the communications network, more specifically a predictive system of Key Performance Indicators (KPIs), from a major Internet Service Provider (ISP) in Portugal. The selected KPIs are highly correlated with the cellular network traffic. This system uses a grid-based clustering algorithm to group cells based on their spatial dependencies. Then, several methods are used to forecast future values and the results are compared. The persistence model is used as a baseline, the Seasonal Autoregressive Integrated Moving Average (SARIMA) is used as the classic statistical method, and the Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are used as machine learning methods. The results showed that GRU outperformed the SARIMA method and had a slight improvement compared to the LSTM method. Lastly, a study is done on the developed model (based on a cluster) when forecasting different clusters without being retrained, and when trained with data from the newly selected cluster. The results achieved are promising when forecasting other similar behavior clusters.
id RCAP_9a2ac7fbc6d9d913df95a5c71bbed677
oai_identifier_str oai:ria.ua.pt:10773/41694
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A cluster-based approach for cellular traffic prediction with machine learning methods5GCellular traffic predictionClusteringKPI predictionMachine learningRecurrent neural networksSmart urban mobilityTime seriesOver the last decade, technologies like Fourth Generation of Cellular Communications (4G) and Cloud computing have profoundly transformed our way of living and communicating, increasing cellular traffic by tenfold every five years. Technologies like Fifth Generation of Cellular Communications (5G) and Internet of Things (IoT) are expected to continue this increasing trend. To handle such large and complex networks, the community strives to achieve self-management, intelligent Autonomous Networks (AN). With accurate traffic prediction, we can make autonomous decisions in planning, management, resource allocation, etc. This dissertation devotes itself to implementing and testing a cellular traffic predictive system of the state of the communications network, more specifically a predictive system of Key Performance Indicators (KPIs), from a major Internet Service Provider (ISP) in Portugal. The selected KPIs are highly correlated with the cellular network traffic. This system uses a grid-based clustering algorithm to group cells based on their spatial dependencies. Then, several methods are used to forecast future values and the results are compared. The persistence model is used as a baseline, the Seasonal Autoregressive Integrated Moving Average (SARIMA) is used as the classic statistical method, and the Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are used as machine learning methods. The results showed that GRU outperformed the SARIMA method and had a slight improvement compared to the LSTM method. Lastly, a study is done on the developed model (based on a cluster) when forecasting different clusters without being retrained, and when trained with data from the newly selected cluster. The results achieved are promising when forecasting other similar behavior clusters.Ao longo da última década, tecnologias como a Quarta Geração de Comunicações Celulares (4G) e a computação em Nuvem transformaram profundamente a nossa forma de viver e de comunicar, aumentando o tráfego celular em dez vezes a cada cinco anos. Espera-se que tecnologias como Quinta Geração de Comunicações Celulares (5G) e Internet das Coisas (IoT) continuem com esta tendência crescente. Para lidar com redes tão grandes e complexas, a comunidade esforçar-se para alcançar Redes Autônomas (AN) inteligentes e auto-gerenciadas. Com uma previsão de tráfego precisa, podemos tomar decisões autónomas no planeamento, gestão, alocação de recursos, etc. Esta dissertação dedica-se à implementação e teste de um sistema preditivo de tráfego celular do estado da rede de comunicações, mais especificamente um sistema preditivo de Indicadores-Chave de Desempenho (KPIs), de um dos principais Fornecedor de Serviços de Internet (ISP) em Portugal. Os KPIs selecionados estão altamente correlacionados com o tráfego da rede celular. Este sistema usa um algoritmo de cluster baseado em rede para agrupar células com base nas suas dependências espaciais. Em seguida, vários métodos são utilizados para prever valores futuros e os resultados são comparados. O modelo de persistência é usado como base, o Seasonal AutoRegressive Integrated Moving Average (SARIMA) é usado como método estatístico clássico, e o Long-Short Term Memory (LSTM) e Gated Recurrent Unit (GRU) são usados como métodos de aprendizagem automática. Os resultados mostraram que o GRU superou o método SARIMA e teve uma ligeira melhoria em relação ao método LSTM. Por último, é feito um estudo do modelo desenvolvido (baseado num cluster) ao prever diferentes clusters sem ser retreinado, e quando treinado com os dados do novo cluster selecionado. Os resultados alcançados são promissores na previsão de outros clusters com comportamento semelhante.2024-04-24T08:12:39Z2023-12-12T00:00:00Z2023-12-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41694engCorreia, Daniel Valainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:56:31Zoai:ria.ua.pt:10773/41694Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:24:22.036402Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A cluster-based approach for cellular traffic prediction with machine learning methods
title A cluster-based approach for cellular traffic prediction with machine learning methods
spellingShingle A cluster-based approach for cellular traffic prediction with machine learning methods
Correia, Daniel Vala
5G
Cellular traffic prediction
Clustering
KPI prediction
Machine learning
Recurrent neural networks
Smart urban mobility
Time series
title_short A cluster-based approach for cellular traffic prediction with machine learning methods
title_full A cluster-based approach for cellular traffic prediction with machine learning methods
title_fullStr A cluster-based approach for cellular traffic prediction with machine learning methods
title_full_unstemmed A cluster-based approach for cellular traffic prediction with machine learning methods
title_sort A cluster-based approach for cellular traffic prediction with machine learning methods
author Correia, Daniel Vala
author_facet Correia, Daniel Vala
author_role author
dc.contributor.author.fl_str_mv Correia, Daniel Vala
dc.subject.por.fl_str_mv 5G
Cellular traffic prediction
Clustering
KPI prediction
Machine learning
Recurrent neural networks
Smart urban mobility
Time series
topic 5G
Cellular traffic prediction
Clustering
KPI prediction
Machine learning
Recurrent neural networks
Smart urban mobility
Time series
description Over the last decade, technologies like Fourth Generation of Cellular Communications (4G) and Cloud computing have profoundly transformed our way of living and communicating, increasing cellular traffic by tenfold every five years. Technologies like Fifth Generation of Cellular Communications (5G) and Internet of Things (IoT) are expected to continue this increasing trend. To handle such large and complex networks, the community strives to achieve self-management, intelligent Autonomous Networks (AN). With accurate traffic prediction, we can make autonomous decisions in planning, management, resource allocation, etc. This dissertation devotes itself to implementing and testing a cellular traffic predictive system of the state of the communications network, more specifically a predictive system of Key Performance Indicators (KPIs), from a major Internet Service Provider (ISP) in Portugal. The selected KPIs are highly correlated with the cellular network traffic. This system uses a grid-based clustering algorithm to group cells based on their spatial dependencies. Then, several methods are used to forecast future values and the results are compared. The persistence model is used as a baseline, the Seasonal Autoregressive Integrated Moving Average (SARIMA) is used as the classic statistical method, and the Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are used as machine learning methods. The results showed that GRU outperformed the SARIMA method and had a slight improvement compared to the LSTM method. Lastly, a study is done on the developed model (based on a cluster) when forecasting different clusters without being retrained, and when trained with data from the newly selected cluster. The results achieved are promising when forecasting other similar behavior clusters.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-12T00:00:00Z
2023-12-12
2024-04-24T08:12:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/41694
url http://hdl.handle.net/10773/41694
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594567974191104