Streamlining the analysis of phishing emails using Artificial Intelligence

Bibliographic Details
Main Author: Fernandes, Eduardo Rocha
Publication Date: 2024
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/45053
Summary: The increasing sophistication and frequency of email phishing attacks pose a significant challenge to cybersecurity. This thesis explores the integration of Artificial Intelligence (AI), specifically Natural Language Processing (NLP) and Machine Learning (ML)/Deep Learning (DL) techniques, to enhance the detection of phishing emails and emotion analysis. By using AI-driven NLP modules, this study aims to develop an AI-based solution that accurately detects phishing emails and includes automated response capabilities. Tested in a local environment, the proposed framework demonstrates its potential to improve phishing detection efficiently. Ultimately, this research contributes to the cybersecurity field by providing a comprehensive, AIpowered framework for more robust phishing email detection.
id RCAP_da34ec8507eb035e4e9f23eccd547c14
oai_identifier_str oai:ria.ua.pt:10773/45053
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Streamlining the analysis of phishing emails using Artificial IntelligenceE-mailPhishing detectionNatural language processingEmotion analysisArtificial intelligencePhishing detectionThe increasing sophistication and frequency of email phishing attacks pose a significant challenge to cybersecurity. This thesis explores the integration of Artificial Intelligence (AI), specifically Natural Language Processing (NLP) and Machine Learning (ML)/Deep Learning (DL) techniques, to enhance the detection of phishing emails and emotion analysis. By using AI-driven NLP modules, this study aims to develop an AI-based solution that accurately detects phishing emails and includes automated response capabilities. Tested in a local environment, the proposed framework demonstrates its potential to improve phishing detection efficiently. Ultimately, this research contributes to the cybersecurity field by providing a comprehensive, AIpowered framework for more robust phishing email detection.O aumento da sofisticação e frequência dos ataques de phishing por email representa um desafio significativo para a cibersegurança. Esta tese explora a integração de Inteligência Artificial (IA), especificamente técnicas de Processamento de Linguagem Natural (PLN) e de Aprendizagem Automática (AA)/Aprendizagem Profunda (AP), para melhorar a deteção de emails de phishing e realizar uma análise de emoções. Através de módulos de PLN orientados por IA, este estudo visa desenvolver uma solução baseada em IA que detete emails de phishing com precisão e inclua capacidades de resposta automatizadas. Testada num ambiente local, a framework proposta demonstra o seu potencial para melhorar a deteção de phishing de forma eficiente. Em última análise, esta investigação contribui para o campo da cibersegurança, oferecendo uma abordagem abrangente e orientada por IA para uma deteção de phishing mais robusta.2025-05-20T13:03:22Z2024-12-18T00:00:00Z2024-12-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/45053engFernandes, Eduardo Rochainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-26T01:49:11Zoai:ria.ua.pt:10773/45053Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T07:37:04.512532Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Streamlining the analysis of phishing emails using Artificial Intelligence
title Streamlining the analysis of phishing emails using Artificial Intelligence
spellingShingle Streamlining the analysis of phishing emails using Artificial Intelligence
Fernandes, Eduardo Rocha
E-mail
Phishing detection
Natural language processing
Emotion analysis
Artificial intelligence
Phishing detection
title_short Streamlining the analysis of phishing emails using Artificial Intelligence
title_full Streamlining the analysis of phishing emails using Artificial Intelligence
title_fullStr Streamlining the analysis of phishing emails using Artificial Intelligence
title_full_unstemmed Streamlining the analysis of phishing emails using Artificial Intelligence
title_sort Streamlining the analysis of phishing emails using Artificial Intelligence
author Fernandes, Eduardo Rocha
author_facet Fernandes, Eduardo Rocha
author_role author
dc.contributor.author.fl_str_mv Fernandes, Eduardo Rocha
dc.subject.por.fl_str_mv E-mail
Phishing detection
Natural language processing
Emotion analysis
Artificial intelligence
Phishing detection
topic E-mail
Phishing detection
Natural language processing
Emotion analysis
Artificial intelligence
Phishing detection
description The increasing sophistication and frequency of email phishing attacks pose a significant challenge to cybersecurity. This thesis explores the integration of Artificial Intelligence (AI), specifically Natural Language Processing (NLP) and Machine Learning (ML)/Deep Learning (DL) techniques, to enhance the detection of phishing emails and emotion analysis. By using AI-driven NLP modules, this study aims to develop an AI-based solution that accurately detects phishing emails and includes automated response capabilities. Tested in a local environment, the proposed framework demonstrates its potential to improve phishing detection efficiently. Ultimately, this research contributes to the cybersecurity field by providing a comprehensive, AIpowered framework for more robust phishing email detection.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-18T00:00:00Z
2024-12-18
2025-05-20T13:03:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/45053
url http://hdl.handle.net/10773/45053
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833603019540791296