Streamlining the analysis of phishing emails using Artificial Intelligence
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/45053 |
Summary: | The increasing sophistication and frequency of email phishing attacks pose a significant challenge to cybersecurity. This thesis explores the integration of Artificial Intelligence (AI), specifically Natural Language Processing (NLP) and Machine Learning (ML)/Deep Learning (DL) techniques, to enhance the detection of phishing emails and emotion analysis. By using AI-driven NLP modules, this study aims to develop an AI-based solution that accurately detects phishing emails and includes automated response capabilities. Tested in a local environment, the proposed framework demonstrates its potential to improve phishing detection efficiently. Ultimately, this research contributes to the cybersecurity field by providing a comprehensive, AIpowered framework for more robust phishing email detection. |
id |
RCAP_da34ec8507eb035e4e9f23eccd547c14 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/45053 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Streamlining the analysis of phishing emails using Artificial IntelligenceE-mailPhishing detectionNatural language processingEmotion analysisArtificial intelligencePhishing detectionThe increasing sophistication and frequency of email phishing attacks pose a significant challenge to cybersecurity. This thesis explores the integration of Artificial Intelligence (AI), specifically Natural Language Processing (NLP) and Machine Learning (ML)/Deep Learning (DL) techniques, to enhance the detection of phishing emails and emotion analysis. By using AI-driven NLP modules, this study aims to develop an AI-based solution that accurately detects phishing emails and includes automated response capabilities. Tested in a local environment, the proposed framework demonstrates its potential to improve phishing detection efficiently. Ultimately, this research contributes to the cybersecurity field by providing a comprehensive, AIpowered framework for more robust phishing email detection.O aumento da sofisticação e frequência dos ataques de phishing por email representa um desafio significativo para a cibersegurança. Esta tese explora a integração de Inteligência Artificial (IA), especificamente técnicas de Processamento de Linguagem Natural (PLN) e de Aprendizagem Automática (AA)/Aprendizagem Profunda (AP), para melhorar a deteção de emails de phishing e realizar uma análise de emoções. Através de módulos de PLN orientados por IA, este estudo visa desenvolver uma solução baseada em IA que detete emails de phishing com precisão e inclua capacidades de resposta automatizadas. Testada num ambiente local, a framework proposta demonstra o seu potencial para melhorar a deteção de phishing de forma eficiente. Em última análise, esta investigação contribui para o campo da cibersegurança, oferecendo uma abordagem abrangente e orientada por IA para uma deteção de phishing mais robusta.2025-05-20T13:03:22Z2024-12-18T00:00:00Z2024-12-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/45053engFernandes, Eduardo Rochainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-26T01:49:11Zoai:ria.ua.pt:10773/45053Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T07:37:04.512532Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Streamlining the analysis of phishing emails using Artificial Intelligence |
title |
Streamlining the analysis of phishing emails using Artificial Intelligence |
spellingShingle |
Streamlining the analysis of phishing emails using Artificial Intelligence Fernandes, Eduardo Rocha Phishing detection Natural language processing Emotion analysis Artificial intelligence Phishing detection |
title_short |
Streamlining the analysis of phishing emails using Artificial Intelligence |
title_full |
Streamlining the analysis of phishing emails using Artificial Intelligence |
title_fullStr |
Streamlining the analysis of phishing emails using Artificial Intelligence |
title_full_unstemmed |
Streamlining the analysis of phishing emails using Artificial Intelligence |
title_sort |
Streamlining the analysis of phishing emails using Artificial Intelligence |
author |
Fernandes, Eduardo Rocha |
author_facet |
Fernandes, Eduardo Rocha |
author_role |
author |
dc.contributor.author.fl_str_mv |
Fernandes, Eduardo Rocha |
dc.subject.por.fl_str_mv |
E-mail Phishing detection Natural language processing Emotion analysis Artificial intelligence Phishing detection |
topic |
E-mail Phishing detection Natural language processing Emotion analysis Artificial intelligence Phishing detection |
description |
The increasing sophistication and frequency of email phishing attacks pose a significant challenge to cybersecurity. This thesis explores the integration of Artificial Intelligence (AI), specifically Natural Language Processing (NLP) and Machine Learning (ML)/Deep Learning (DL) techniques, to enhance the detection of phishing emails and emotion analysis. By using AI-driven NLP modules, this study aims to develop an AI-based solution that accurately detects phishing emails and includes automated response capabilities. Tested in a local environment, the proposed framework demonstrates its potential to improve phishing detection efficiently. Ultimately, this research contributes to the cybersecurity field by providing a comprehensive, AIpowered framework for more robust phishing email detection. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12-18T00:00:00Z 2024-12-18 2025-05-20T13:03:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/45053 |
url |
http://hdl.handle.net/10773/45053 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833603019540791296 |