Análise comparativa de algoritmos de inteligência artificial para detecção de smishing

Detalhes bibliográficos
Autor(a) principal: Santos, Pedro Henrique dos
Data de Publicação: 2024
Outros Autores: Vasconcellos, Victor Huander Lima de
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional PUCRS
Texto Completo: https://hdl.handle.net/10923/26799
Resumo: Smishing, a deceptive form of cyber attack that combines SMS messages with phishing techniques, represents a growing threat to individuals and organizations. In this article, we compile a collection of necessary knowledge for a good understanding of the problem itself and some of its possible solutions. Additionally, we conduct a comparative analysis of two of the most modern Artificial Intelligence (AI) algorithms to evaluate their effectiveness in detecting smishing attempts in a diverse dataset of smishing messages. We explore popular machine learning models, including KNN, random forests, support vector machines, XGBoost, and LightGBM. Our research highlights the strengths and weaknesses of each algorithm in terms of accuracy, recall, and computational efficiency, providing valuable insights to enhance smishing detection systems.
id PUCR_8d9f91b7c0c5ab67e1023705f31c46d0
oai_identifier_str oai:meriva.pucrs.br:10923/26799
network_acronym_str PUCR
network_name_str Repositório Institucional PUCRS
repository_id_str 2753
spelling Santos, Pedro Henrique dosVasconcellos, Victor Huander Lima deBacelo, Ana Paula Terra2024-11-12T17:44:04Z2024-11-12T17:44:04Z2024https://hdl.handle.net/10923/26799Smishing, a deceptive form of cyber attack that combines SMS messages with phishing techniques, represents a growing threat to individuals and organizations. In this article, we compile a collection of necessary knowledge for a good understanding of the problem itself and some of its possible solutions. Additionally, we conduct a comparative analysis of two of the most modern Artificial Intelligence (AI) algorithms to evaluate their effectiveness in detecting smishing attempts in a diverse dataset of smishing messages. We explore popular machine learning models, including KNN, random forests, support vector machines, XGBoost, and LightGBM. Our research highlights the strengths and weaknesses of each algorithm in terms of accuracy, recall, and computational efficiency, providing valuable insights to enhance smishing detection systems.O smishing, uma forma dissimulada de ataque cibernético que combina mensagens de SMS com técnicas de phishing, representa uma ameaça em crescimento para indivíduos e organizações. Neste artigo, compilamos uma coleção de conhecimentos necessários para uma boa compreensão do problema em si e de algumas de suas possíveis soluções. Além disso, realizamos uma análise comparativa de dois dos mais modernos algoritmos de Inteligência Artificial (IA) para avaliar sua eficácia na detecção de tentativas de smishing em um conjunto de dados diversificado de mensagens de smishing. Exploramos modelos populares de aprendizado de máquina, incluindo KNN, florestas aleatórias, máquinas de vetor de suporte, XGBoost e LightGBM. Nossa pesquisa destaca as forças e fraquezas de cada algoritmo em termos de precisão, recall e eficiência computacional, fornecendo informações valiosas para aprimorar os sistemas de detecção de smishing.Submitted by Norton Amadeu (norton.amadeu@pucrs.br) on 2024-11-04T16:58:34Z No. of bitstreams: 1 2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCEL_TCC.pdf: 2446922 bytes, checksum: c277d898dd5fd99607b12821d5a6a92f (MD5)Rejected by Ferdinando Lopes Avila (ferdinando.avila@pucrs.br), reason: Rejeitado para correção o TCC de Pedro Henrique dos Santos, Victor Huander Lima de Vasconcellos. Ajustar o arquivo que foi realizado upload no repositório: 2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCEL_TCC.pdf Ficou faltando as letras: LOS em VASCONCELLOS. on 2024-11-12T16:34:54Z (GMT)Submitted by Norton Amadeu (norton.amadeu@pucrs.br) on 2024-11-12T17:38:56Z No. of bitstreams: 1 2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdf: 2446922 bytes, checksum: c277d898dd5fd99607b12821d5a6a92f (MD5)Approved for entry into archive by Ferdinando Lopes Avila (ferdinando.avila@pucrs.br) on 2024-11-12T17:44:04Z (GMT) No. of bitstreams: 1 2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdf: 2446922 bytes, checksum: c277d898dd5fd99607b12821d5a6a92f (MD5)Made available in DSpace on 2024-11-12T17:44:04Z (GMT). No. of bitstreams: 1 2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdf: 2446922 bytes, checksum: c277d898dd5fd99607b12821d5a6a92f (MD5) Previous issue date: 2024SMISHINGINTELIGÊNCIA ARTIFICIALAPRENDIZADO DE MÁQUINADETECÇÃO DE PHISHINGANÁLISE COMPARATIVACIBERSEGURANÇAARTIFICIAL INTELLIGENCEMACHINE LEARNINGPHISHING DETECTIONCOMPARATIVE ANALYSISCYBERSECURITYAnálise comparativa de algoritmos de inteligência artificial para detecção de smishinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisPontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaPorto AlegreGraduação2024/1Ciência da Computaçãoinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional PUCRSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RSLICENSElicense.txtlicense.txttext/plain; charset=utf-82315http://meriva.pucrs.br:8080/jspui/bitstream/10923/26799/4/license.txt367e43a91f1b6e78336e58d5753833edMD54ORIGINAL2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdf2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdfTexto completoapplication/pdf2446922http://meriva.pucrs.br:8080/jspui/bitstream/10923/26799/3/2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdfc277d898dd5fd99607b12821d5a6a92fMD5310923/267992024-12-17 11:05:34.482oai:meriva.pucrs.br:10923/26799TElDRU7Dh0EgREUgQVVUT1JJWkHDh8ODTyBQQVJBIERJVlVMR0HDh8ODTyBERSBET0NVTUVOVE9TIE5PIFJFUE9TSVTDk1JJTyBJTlNUSVRVQ0lPTkFMIApEQSBQT05USUbDjUNJQSBVTklWRVJTSURBREUgQ0FUw5NMSUNBIERPIFJJTyBHUkFOREUgRE8gU1VMCgpDb20gYmFzZSBubyBkaXNwb3N0byBuYSBMZWkgRmVkZXJhbCBuwrogOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCAKTm9ydG9uIEFtYWRldSAgIEFVVE9SSVpBICBhICBkaXNwb25pYmlsaXphw6fDo28gIGRpZ2l0YWwgIGRvICAgcHJlc2VudGUgICBkb2N1bWVudG8gIG5vICBhY2Vydm8gIGVsZXRyw7RuaWNvIApkbyAgUmVwb3NpdMOzcmlvICBJbnN0aXR1Y2lvbmFsICBkYSAgUG9udGlmw63CrWNpYSAgVW5pdmVyc2lkYWRlICBDYXTDs2xpY2EgIGRvIFJpbyBHcmFuZGUgZG8gU3VsIChQVUNSUyksIApzZWRpYWRhIGEgQXYuIElwaXJhbmdhIDY2ODEsIFBvcnRvIEFsZWdyZSwgUmlvIEdyYW5kZSBkbyBTdWwsIGNvbSByZWdpc3RybyBkZSBDTlBKIDg4LjYzMC40MTMvMDAwMi04MSAKYmVtICBjb21vIGVtIG91dHJvcyAgcmVwb3NpdMOzcmlvcyBkaWdpdGFpcyAgbmFjaW9uYWlzIGUgaW50ZXJuYWNpb25haXMsIGNvbnPDs3JjaW9zIGUgcmVkZXMgw6BzIHF1YWlzIGEgCmJpYmxpb3RlY2EgIGRhIFBVQ1JTICBwb3NzYSB2aXIgYSAgcGFydGljaXBhciwgIHNlbSDDtG51cyBhbHVzaXZvICBhb3MgZGlyZWl0b3MgIGF1dG9yYWlzLCBhIHTDrcKtdHVsbyBkZSAKZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrcKtZmljYSwgbmFzIGNvbmRpw6fDtWVzIHF1ZSBzZWd1ZW06CgpBbyBzdWJtZXRlciBzZXUgZG9jdW1lbnRvIGUgY29uY29yZGFyIGNvbSBlc3RhIExpY2Vuw6dhLCBOb3J0b24gQW1hZGV1OgoKYSkgQXV0b3JpemEgYSBQb250aWbDrWNpYSBVbml2ZXJzaWRhZGUgQ2F0w7NsaWNhIGRvIFJpbyBHcmFuZGUgZG8gU3VsIChQVUNSUykgYSBkaXNwb25pYmlsaXphciBkZSBmb3JtYSAKICAgbsOjby1leGNsdXNpdmEgbyBkb2N1bWVudG8gIkFuw6FsaXNlIGNvbXBhcmF0aXZhIGRlIGFsZ29yaXRtb3MgZGUgaW50ZWxpZ8OqbmNpYSBhcnRpZmljaWFsIHBhcmEgZGV0ZWPDp8OjbyBkZSBzbWlzaGluZyIuCgpiKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBzZXUgdHJhYmFsaG8gb3JpZ2luYWwsICBlIHF1ZSAgZXN0w6EgYXV0b3JpemFkbyhhKSBhIGN1bXByaXIgY29tIAogICBhcyBleGlnw6puY2lhcyBkZXN0YSBMaWNlbsOnYS4gRGVjbGFyYSwgdGFtYsOpbSwgcXVlIGEgZGlzcG9uaWJpbGl6YcOnw6NvIGRvIGRvY3VtZW50byAgbsOjbyBpbmZyaW5nZSBvcyAKICAgZGlyZWl0b3MgZGUgcXVhbHF1ZXIgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlLgoKYykgU2UgbyBkb2N1bWVudG8gIGVudHJlZ3VlICBjb250w6ltICBtYXRlcmlhbCBkbyAgcXVhbCBuw6NvICBkZXTDqW0gb3MgIGRpcmVpdG9zIGRlIGF1dG9yLCBkZWNsYXJhIGVzdGFyIAogICBhdXRvcml6YWRvKGEpIHBlbG9zIG1lc21vcyBwYXJhIGNvbmNlZGVyIMOgIFBVQ1JTIGEgIGF1dG9yaXphw6fDo28gcmVxdWVyaWRhIG5lc3RhIExpY2Vuw6dhLCBlIHF1ZSBlc3NlIAogICBtYXRlcmlhbCwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MsICBlc3TDoSBjbGFyYW1lbnRlICBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBkbyAKICAgZG9jdW1lbnRvIGVudHJlZ3VlLgoKZCkgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSAKICAgUFVDUlMsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UgYWNvcmRvLgoKQSBQb250aWbDrWNpYSBVbml2ZXJzaWRhZGUgQ2F0w7NsaWNhIGRvIFJpbyBHcmFuZGUgZG8gU3VsICBpZGVudGlmaWNhcsOhLCBzZW1wcmUgIGUgIGRlIGZvcm1hIGNsYXJhLCBvKHMpIApub21lKHMpIGRvKHMpICBhdXRvcihlcykgIG91IGRldGVudG9yKGVzKSAgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byAgZW50cmVndWUsIGUgIG7Do28gIGZhcsOhICBxdWFscXVlciAKYWx0ZXJhw6fDo28gbm8gZG9jdW1lbnRvLgoKICAgICAgICAgICAgICAgICAgICAgICAgICAgIFBvcnRvIEFsZWdyZSwgUmlvIEdyYW5kZSBkbyBTdWwsIEJyYXNpbAogICAgICAgICAgICAgICAgICAgICAgICAgICAgVHVlIE5vdiAxMiAxNDozODo1NiBCUlQgMjAyNAo=Repositório InstitucionalPRIhttp://repositorio.pucrs.br/oai/request?verb=Identifyopendoar:27532024-12-17T14:05:34Repositório Institucional PUCRS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.pt_BR.fl_str_mv Análise comparativa de algoritmos de inteligência artificial para detecção de smishing
title Análise comparativa de algoritmos de inteligência artificial para detecção de smishing
spellingShingle Análise comparativa de algoritmos de inteligência artificial para detecção de smishing
Santos, Pedro Henrique dos
SMISHING
INTELIGÊNCIA ARTIFICIAL
APRENDIZADO DE MÁQUINA
DETECÇÃO DE PHISHING
ANÁLISE COMPARATIVA
CIBERSEGURANÇA
ARTIFICIAL INTELLIGENCE
MACHINE LEARNING
PHISHING DETECTION
COMPARATIVE ANALYSIS
CYBERSECURITY
title_short Análise comparativa de algoritmos de inteligência artificial para detecção de smishing
title_full Análise comparativa de algoritmos de inteligência artificial para detecção de smishing
title_fullStr Análise comparativa de algoritmos de inteligência artificial para detecção de smishing
title_full_unstemmed Análise comparativa de algoritmos de inteligência artificial para detecção de smishing
title_sort Análise comparativa de algoritmos de inteligência artificial para detecção de smishing
author Santos, Pedro Henrique dos
author_facet Santos, Pedro Henrique dos
Vasconcellos, Victor Huander Lima de
author_role author
author2 Vasconcellos, Victor Huander Lima de
author2_role author
dc.contributor.author.fl_str_mv Santos, Pedro Henrique dos
Vasconcellos, Victor Huander Lima de
dc.contributor.advisor1.fl_str_mv Bacelo, Ana Paula Terra
contributor_str_mv Bacelo, Ana Paula Terra
dc.subject.por.fl_str_mv SMISHING
INTELIGÊNCIA ARTIFICIAL
APRENDIZADO DE MÁQUINA
DETECÇÃO DE PHISHING
ANÁLISE COMPARATIVA
CIBERSEGURANÇA
topic SMISHING
INTELIGÊNCIA ARTIFICIAL
APRENDIZADO DE MÁQUINA
DETECÇÃO DE PHISHING
ANÁLISE COMPARATIVA
CIBERSEGURANÇA
ARTIFICIAL INTELLIGENCE
MACHINE LEARNING
PHISHING DETECTION
COMPARATIVE ANALYSIS
CYBERSECURITY
dc.subject.eng.fl_str_mv ARTIFICIAL INTELLIGENCE
MACHINE LEARNING
PHISHING DETECTION
COMPARATIVE ANALYSIS
CYBERSECURITY
description Smishing, a deceptive form of cyber attack that combines SMS messages with phishing techniques, represents a growing threat to individuals and organizations. In this article, we compile a collection of necessary knowledge for a good understanding of the problem itself and some of its possible solutions. Additionally, we conduct a comparative analysis of two of the most modern Artificial Intelligence (AI) algorithms to evaluate their effectiveness in detecting smishing attempts in a diverse dataset of smishing messages. We explore popular machine learning models, including KNN, random forests, support vector machines, XGBoost, and LightGBM. Our research highlights the strengths and weaknesses of each algorithm in terms of accuracy, recall, and computational efficiency, providing valuable insights to enhance smishing detection systems.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-11-12T17:44:04Z
dc.date.available.fl_str_mv 2024-11-12T17:44:04Z
dc.date.issued.fl_str_mv 2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10923/26799
url https://hdl.handle.net/10923/26799
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional PUCRS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Repositório Institucional PUCRS
collection Repositório Institucional PUCRS
bitstream.url.fl_str_mv http://meriva.pucrs.br:8080/jspui/bitstream/10923/26799/4/license.txt
http://meriva.pucrs.br:8080/jspui/bitstream/10923/26799/3/2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdf
bitstream.checksum.fl_str_mv 367e43a91f1b6e78336e58d5753833ed
c277d898dd5fd99607b12821d5a6a92f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional PUCRS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv
_version_ 1837373332611137536