Análise comparativa de algoritmos de inteligência artificial para detecção de smishing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional PUCRS |
Texto Completo: | https://hdl.handle.net/10923/26799 |
Resumo: | Smishing, a deceptive form of cyber attack that combines SMS messages with phishing techniques, represents a growing threat to individuals and organizations. In this article, we compile a collection of necessary knowledge for a good understanding of the problem itself and some of its possible solutions. Additionally, we conduct a comparative analysis of two of the most modern Artificial Intelligence (AI) algorithms to evaluate their effectiveness in detecting smishing attempts in a diverse dataset of smishing messages. We explore popular machine learning models, including KNN, random forests, support vector machines, XGBoost, and LightGBM. Our research highlights the strengths and weaknesses of each algorithm in terms of accuracy, recall, and computational efficiency, providing valuable insights to enhance smishing detection systems. |
id |
PUCR_8d9f91b7c0c5ab67e1023705f31c46d0 |
---|---|
oai_identifier_str |
oai:meriva.pucrs.br:10923/26799 |
network_acronym_str |
PUCR |
network_name_str |
Repositório Institucional PUCRS |
repository_id_str |
2753 |
spelling |
Santos, Pedro Henrique dosVasconcellos, Victor Huander Lima deBacelo, Ana Paula Terra2024-11-12T17:44:04Z2024-11-12T17:44:04Z2024https://hdl.handle.net/10923/26799Smishing, a deceptive form of cyber attack that combines SMS messages with phishing techniques, represents a growing threat to individuals and organizations. In this article, we compile a collection of necessary knowledge for a good understanding of the problem itself and some of its possible solutions. Additionally, we conduct a comparative analysis of two of the most modern Artificial Intelligence (AI) algorithms to evaluate their effectiveness in detecting smishing attempts in a diverse dataset of smishing messages. We explore popular machine learning models, including KNN, random forests, support vector machines, XGBoost, and LightGBM. Our research highlights the strengths and weaknesses of each algorithm in terms of accuracy, recall, and computational efficiency, providing valuable insights to enhance smishing detection systems.O smishing, uma forma dissimulada de ataque cibernético que combina mensagens de SMS com técnicas de phishing, representa uma ameaça em crescimento para indivíduos e organizações. Neste artigo, compilamos uma coleção de conhecimentos necessários para uma boa compreensão do problema em si e de algumas de suas possíveis soluções. Além disso, realizamos uma análise comparativa de dois dos mais modernos algoritmos de Inteligência Artificial (IA) para avaliar sua eficácia na detecção de tentativas de smishing em um conjunto de dados diversificado de mensagens de smishing. Exploramos modelos populares de aprendizado de máquina, incluindo KNN, florestas aleatórias, máquinas de vetor de suporte, XGBoost e LightGBM. Nossa pesquisa destaca as forças e fraquezas de cada algoritmo em termos de precisão, recall e eficiência computacional, fornecendo informações valiosas para aprimorar os sistemas de detecção de smishing.Submitted by Norton Amadeu (norton.amadeu@pucrs.br) on 2024-11-04T16:58:34Z No. of bitstreams: 1 2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCEL_TCC.pdf: 2446922 bytes, checksum: c277d898dd5fd99607b12821d5a6a92f (MD5)Rejected by Ferdinando Lopes Avila (ferdinando.avila@pucrs.br), reason: Rejeitado para correção o TCC de Pedro Henrique dos Santos, Victor Huander Lima de Vasconcellos. Ajustar o arquivo que foi realizado upload no repositório: 2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCEL_TCC.pdf Ficou faltando as letras: LOS em VASCONCELLOS. on 2024-11-12T16:34:54Z (GMT)Submitted by Norton Amadeu (norton.amadeu@pucrs.br) on 2024-11-12T17:38:56Z No. of bitstreams: 1 2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdf: 2446922 bytes, checksum: c277d898dd5fd99607b12821d5a6a92f (MD5)Approved for entry into archive by Ferdinando Lopes Avila (ferdinando.avila@pucrs.br) on 2024-11-12T17:44:04Z (GMT) No. of bitstreams: 1 2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdf: 2446922 bytes, checksum: c277d898dd5fd99607b12821d5a6a92f (MD5)Made available in DSpace on 2024-11-12T17:44:04Z (GMT). No. of bitstreams: 1 2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdf: 2446922 bytes, checksum: c277d898dd5fd99607b12821d5a6a92f (MD5) Previous issue date: 2024SMISHINGINTELIGÊNCIA ARTIFICIALAPRENDIZADO DE MÁQUINADETECÇÃO DE PHISHINGANÁLISE COMPARATIVACIBERSEGURANÇAARTIFICIAL INTELLIGENCEMACHINE LEARNINGPHISHING DETECTIONCOMPARATIVE ANALYSISCYBERSECURITYAnálise comparativa de algoritmos de inteligência artificial para detecção de smishinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisPontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaPorto AlegreGraduação2024/1Ciência da Computaçãoinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional PUCRSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RSLICENSElicense.txtlicense.txttext/plain; charset=utf-82315http://meriva.pucrs.br:8080/jspui/bitstream/10923/26799/4/license.txt367e43a91f1b6e78336e58d5753833edMD54ORIGINAL2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdf2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdfTexto completoapplication/pdf2446922http://meriva.pucrs.br:8080/jspui/bitstream/10923/26799/3/2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdfc277d898dd5fd99607b12821d5a6a92fMD5310923/267992024-12-17 11:05:34.482oai:meriva.pucrs.br:10923/26799TElDRU7Dh0EgREUgQVVUT1JJWkHDh8ODTyBQQVJBIERJVlVMR0HDh8ODTyBERSBET0NVTUVOVE9TIE5PIFJFUE9TSVTDk1JJTyBJTlNUSVRVQ0lPTkFMIApEQSBQT05USUbDjUNJQSBVTklWRVJTSURBREUgQ0FUw5NMSUNBIERPIFJJTyBHUkFOREUgRE8gU1VMCgpDb20gYmFzZSBubyBkaXNwb3N0byBuYSBMZWkgRmVkZXJhbCBuwrogOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCAKTm9ydG9uIEFtYWRldSAgIEFVVE9SSVpBICBhICBkaXNwb25pYmlsaXphw6fDo28gIGRpZ2l0YWwgIGRvICAgcHJlc2VudGUgICBkb2N1bWVudG8gIG5vICBhY2Vydm8gIGVsZXRyw7RuaWNvIApkbyAgUmVwb3NpdMOzcmlvICBJbnN0aXR1Y2lvbmFsICBkYSAgUG9udGlmw63CrWNpYSAgVW5pdmVyc2lkYWRlICBDYXTDs2xpY2EgIGRvIFJpbyBHcmFuZGUgZG8gU3VsIChQVUNSUyksIApzZWRpYWRhIGEgQXYuIElwaXJhbmdhIDY2ODEsIFBvcnRvIEFsZWdyZSwgUmlvIEdyYW5kZSBkbyBTdWwsIGNvbSByZWdpc3RybyBkZSBDTlBKIDg4LjYzMC40MTMvMDAwMi04MSAKYmVtICBjb21vIGVtIG91dHJvcyAgcmVwb3NpdMOzcmlvcyBkaWdpdGFpcyAgbmFjaW9uYWlzIGUgaW50ZXJuYWNpb25haXMsIGNvbnPDs3JjaW9zIGUgcmVkZXMgw6BzIHF1YWlzIGEgCmJpYmxpb3RlY2EgIGRhIFBVQ1JTICBwb3NzYSB2aXIgYSAgcGFydGljaXBhciwgIHNlbSDDtG51cyBhbHVzaXZvICBhb3MgZGlyZWl0b3MgIGF1dG9yYWlzLCBhIHTDrcKtdHVsbyBkZSAKZGl2dWxnYcOnw6NvIGRhIHByb2R1w6fDo28gY2llbnTDrcKtZmljYSwgbmFzIGNvbmRpw6fDtWVzIHF1ZSBzZWd1ZW06CgpBbyBzdWJtZXRlciBzZXUgZG9jdW1lbnRvIGUgY29uY29yZGFyIGNvbSBlc3RhIExpY2Vuw6dhLCBOb3J0b24gQW1hZGV1OgoKYSkgQXV0b3JpemEgYSBQb250aWbDrWNpYSBVbml2ZXJzaWRhZGUgQ2F0w7NsaWNhIGRvIFJpbyBHcmFuZGUgZG8gU3VsIChQVUNSUykgYSBkaXNwb25pYmlsaXphciBkZSBmb3JtYSAKICAgbsOjby1leGNsdXNpdmEgbyBkb2N1bWVudG8gIkFuw6FsaXNlIGNvbXBhcmF0aXZhIGRlIGFsZ29yaXRtb3MgZGUgaW50ZWxpZ8OqbmNpYSBhcnRpZmljaWFsIHBhcmEgZGV0ZWPDp8OjbyBkZSBzbWlzaGluZyIuCgpiKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBzZXUgdHJhYmFsaG8gb3JpZ2luYWwsICBlIHF1ZSAgZXN0w6EgYXV0b3JpemFkbyhhKSBhIGN1bXByaXIgY29tIAogICBhcyBleGlnw6puY2lhcyBkZXN0YSBMaWNlbsOnYS4gRGVjbGFyYSwgdGFtYsOpbSwgcXVlIGEgZGlzcG9uaWJpbGl6YcOnw6NvIGRvIGRvY3VtZW50byAgbsOjbyBpbmZyaW5nZSBvcyAKICAgZGlyZWl0b3MgZGUgcXVhbHF1ZXIgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlLgoKYykgU2UgbyBkb2N1bWVudG8gIGVudHJlZ3VlICBjb250w6ltICBtYXRlcmlhbCBkbyAgcXVhbCBuw6NvICBkZXTDqW0gb3MgIGRpcmVpdG9zIGRlIGF1dG9yLCBkZWNsYXJhIGVzdGFyIAogICBhdXRvcml6YWRvKGEpIHBlbG9zIG1lc21vcyBwYXJhIGNvbmNlZGVyIMOgIFBVQ1JTIGEgIGF1dG9yaXphw6fDo28gcmVxdWVyaWRhIG5lc3RhIExpY2Vuw6dhLCBlIHF1ZSBlc3NlIAogICBtYXRlcmlhbCwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MsICBlc3TDoSBjbGFyYW1lbnRlICBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBkbyAKICAgZG9jdW1lbnRvIGVudHJlZ3VlLgoKZCkgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSAKICAgUFVDUlMsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UgYWNvcmRvLgoKQSBQb250aWbDrWNpYSBVbml2ZXJzaWRhZGUgQ2F0w7NsaWNhIGRvIFJpbyBHcmFuZGUgZG8gU3VsICBpZGVudGlmaWNhcsOhLCBzZW1wcmUgIGUgIGRlIGZvcm1hIGNsYXJhLCBvKHMpIApub21lKHMpIGRvKHMpICBhdXRvcihlcykgIG91IGRldGVudG9yKGVzKSAgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byAgZW50cmVndWUsIGUgIG7Do28gIGZhcsOhICBxdWFscXVlciAKYWx0ZXJhw6fDo28gbm8gZG9jdW1lbnRvLgoKICAgICAgICAgICAgICAgICAgICAgICAgICAgIFBvcnRvIEFsZWdyZSwgUmlvIEdyYW5kZSBkbyBTdWwsIEJyYXNpbAogICAgICAgICAgICAgICAgICAgICAgICAgICAgVHVlIE5vdiAxMiAxNDozODo1NiBCUlQgMjAyNAo=Repositório InstitucionalPRIhttp://repositorio.pucrs.br/oai/request?verb=Identifyopendoar:27532024-12-17T14:05:34Repositório Institucional PUCRS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
dc.title.pt_BR.fl_str_mv |
Análise comparativa de algoritmos de inteligência artificial para detecção de smishing |
title |
Análise comparativa de algoritmos de inteligência artificial para detecção de smishing |
spellingShingle |
Análise comparativa de algoritmos de inteligência artificial para detecção de smishing Santos, Pedro Henrique dos SMISHING INTELIGÊNCIA ARTIFICIAL APRENDIZADO DE MÁQUINA DETECÇÃO DE PHISHING ANÁLISE COMPARATIVA CIBERSEGURANÇA ARTIFICIAL INTELLIGENCE MACHINE LEARNING PHISHING DETECTION COMPARATIVE ANALYSIS CYBERSECURITY |
title_short |
Análise comparativa de algoritmos de inteligência artificial para detecção de smishing |
title_full |
Análise comparativa de algoritmos de inteligência artificial para detecção de smishing |
title_fullStr |
Análise comparativa de algoritmos de inteligência artificial para detecção de smishing |
title_full_unstemmed |
Análise comparativa de algoritmos de inteligência artificial para detecção de smishing |
title_sort |
Análise comparativa de algoritmos de inteligência artificial para detecção de smishing |
author |
Santos, Pedro Henrique dos |
author_facet |
Santos, Pedro Henrique dos Vasconcellos, Victor Huander Lima de |
author_role |
author |
author2 |
Vasconcellos, Victor Huander Lima de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Santos, Pedro Henrique dos Vasconcellos, Victor Huander Lima de |
dc.contributor.advisor1.fl_str_mv |
Bacelo, Ana Paula Terra |
contributor_str_mv |
Bacelo, Ana Paula Terra |
dc.subject.por.fl_str_mv |
SMISHING INTELIGÊNCIA ARTIFICIAL APRENDIZADO DE MÁQUINA DETECÇÃO DE PHISHING ANÁLISE COMPARATIVA CIBERSEGURANÇA |
topic |
SMISHING INTELIGÊNCIA ARTIFICIAL APRENDIZADO DE MÁQUINA DETECÇÃO DE PHISHING ANÁLISE COMPARATIVA CIBERSEGURANÇA ARTIFICIAL INTELLIGENCE MACHINE LEARNING PHISHING DETECTION COMPARATIVE ANALYSIS CYBERSECURITY |
dc.subject.eng.fl_str_mv |
ARTIFICIAL INTELLIGENCE MACHINE LEARNING PHISHING DETECTION COMPARATIVE ANALYSIS CYBERSECURITY |
description |
Smishing, a deceptive form of cyber attack that combines SMS messages with phishing techniques, represents a growing threat to individuals and organizations. In this article, we compile a collection of necessary knowledge for a good understanding of the problem itself and some of its possible solutions. Additionally, we conduct a comparative analysis of two of the most modern Artificial Intelligence (AI) algorithms to evaluate their effectiveness in detecting smishing attempts in a diverse dataset of smishing messages. We explore popular machine learning models, including KNN, random forests, support vector machines, XGBoost, and LightGBM. Our research highlights the strengths and weaknesses of each algorithm in terms of accuracy, recall, and computational efficiency, providing valuable insights to enhance smishing detection systems. |
publishDate |
2024 |
dc.date.accessioned.fl_str_mv |
2024-11-12T17:44:04Z |
dc.date.available.fl_str_mv |
2024-11-12T17:44:04Z |
dc.date.issued.fl_str_mv |
2024 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10923/26799 |
url |
https://hdl.handle.net/10923/26799 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional PUCRS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
instacron_str |
PUC_RS |
institution |
PUC_RS |
reponame_str |
Repositório Institucional PUCRS |
collection |
Repositório Institucional PUCRS |
bitstream.url.fl_str_mv |
http://meriva.pucrs.br:8080/jspui/bitstream/10923/26799/4/license.txt http://meriva.pucrs.br:8080/jspui/bitstream/10923/26799/3/2024_1_PEDRO_HENRIQUE_DOS_SANTOS_VICTOR_HUANDER_LIMA_DE_VASCONCELLOS_TCC.pdf |
bitstream.checksum.fl_str_mv |
367e43a91f1b6e78336e58d5753833ed c277d898dd5fd99607b12821d5a6a92f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional PUCRS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
repository.mail.fl_str_mv |
|
_version_ |
1837373332611137536 |